Skip to main content
Log in

Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Methylammonium lead iodide (CH3NH3PbI3) has attracted tremendous attention in solar cell development due to its direct band gap, ~ 1.50 eV and high optical absorption coefficient, ~ 104–105 cm−1. CH3NH3PbI3 samples were synthesized using a low-cost wet chemical technique and studied their structural, optical, morphological, compositional and thermogravimetric properties. X-ray diffraction pattern of CH3NH3PbI3 revealed a single phase with tetragonal crystal structure; however, the orientation strongly depended on the heating of the sample. Raman spectra exhibited the bending and stretching bonds of Pb–I around 62 and 94 cm−1, respectively, in all samples. The chemical functions of C–H and N–H stretching, C–H and N–H bends, O–H stretch and C–H rock and twist bonds were detected in FTIR spectra. A systematic bond shift revealed higher wavenumber upon increasing the drying temperature demonstrates the growth of stable material. A sharp band edge observed around 1.5 eV confirmed the synthesis of less defective material suitable for high efficiency solar cell development. The content of Pb and I with a desired stoichiometry was determined with EDS measurement. Thermogravimetric analysis demonstrates no weight loss in CH3NH3PbI3 samples up to 220 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzeland, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013)

    Article  Google Scholar 

  2. https://www.nrel.gov/pv/cell-efiiciency.html

  3. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)

    Article  ADS  Google Scholar 

  4. I. Chung, B. Lee, J. He, R.P.H. Chang, M. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012)

    Article  ADS  Google Scholar 

  5. Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H. Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 53). Prog. Photovoltaics Res. Appl. 27(1), 3–12 (2019)

    Article  Google Scholar 

  6. W. Tress, Metal halid perovskites as mixed electronic-ionic conductors: challenges and opportunities from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017)

    Article  Google Scholar 

  7. R. Zhang, J. Fan, X. Zhang, H. Yu, H. Zhang, Y. Mai, T. Xu, J. Wang, H.J. Snaith, Nonlinear optical response of organic−inorganic halide perovskites. Am. Chem. Soc. Photon. 3, 371–377 (2016)

    Google Scholar 

  8. J.Y. Chen, Y.C. Chiu, Y.T. Li, C.C. Chueh, W.C. Chen, Nonvolatile perovskite-based photomemory with a multilevel memory behavior. Adv. Mater. 29, 344–347 (2017)

    Google Scholar 

  9. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S. Seok II, Efficient inorganic−organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon 7, 486–491 (2013)

    Article  ADS  Google Scholar 

  10. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Graẗzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron and hole-transport lengths in organic−inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  ADS  Google Scholar 

  11. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium–lead–halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    Article  ADS  Google Scholar 

  12. A. Halder, D. Choudhary, S. Ghosh, A.S. Subbiah, S.K. Sarkar, Exploring thermochromic behaviour of hydrated hybrid perovskites in solar cells. J. Phys. Chem. Lett. 6, 3180–3184 (2015)

    Article  Google Scholar 

  13. D. Prochowicz, M. Frančkevicius, A.M. Cieślak, S.M. Zakeeruddin, M. Grätzel, J. Lewiński, Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency. J. Mater. Chem. A 3, 20772–20777 (2015)

    Article  Google Scholar 

  14. A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987)

    Article  ADS  Google Scholar 

  15. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron–hole diffusion lengths exceeding 1 μm in an organometaltrihalide perovskite absorber. Science 234, 341–344 (2013)

    Article  ADS  Google Scholar 

  16. B.J. Foley, D.L. Marlowe, K. Sun, W.A. Saidi, L. Scudiero, M.C. Gupta, J.J. Choi, Temperature dependent energy levels of methylammonium lead iodide perovskite. Appl. Phys. Lett. 106, 243904 (2015)

    Article  ADS  Google Scholar 

  17. V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun 5, 3586 (2014)

    Article  ADS  Google Scholar 

  18. G.R. Kumar, A.D. Savariraj, S.N. Karthick, S. Selvam, B. Balamuralitharan, H.-J. Kim, K.K. Viswanathan, M. Vijaykumar, K. Prabakar, Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys. Chem. Chem. Phys. 18, 7284 (2016)

    Article  Google Scholar 

  19. Z. Wang, J. Liu, Z.Q. Xu, Y. Xue, L. Jiang, J. Song, F. Huang, Y. Wang, Y.L. Zhong, Y. Zhang, Y.B. Cheng, Q. Bao, Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires. Nanoscale 8, 6258–6264 (2016)

    Article  ADS  Google Scholar 

  20. P. Fan, D. Gu, G.X. Liang, J.T. Luo, J.L. Chen, Z.H. Zheng, D.P. Zhang, High-performance perovskite CH3NH3PbI3 thin films for solar cellsprepared by single-source physical vapour deposition. Sci. Rep. 6, 29910–29919 (2016)

    Article  ADS  Google Scholar 

  21. P.I. Cowin, R. Lan, C.T.G. Petit, D. Du, K. Xie, H. Wang, S. Tao, Conductivity and redox stability of new perovskite oxides SrFe0.7TM0.2Ti0.1O3 δ (TM = Mn, Fe Co, Ni, Cu). Solid State Ionics 301, 99–105 (2017)

    Article  Google Scholar 

  22. S. Luo, W.A. Daoud, Crystal structure formation of CH3NH3PbI3 xClx perovskite. Materials 9, 123 (2016)

    Article  ADS  Google Scholar 

  23. X. Guo, C. McCleese, C. Kolodziej, A.C.S. Samia, Y. Zhao, C. Burda, Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalton Trans. 45, 3806 (2016)

    Article  Google Scholar 

  24. B.R. Vincent, K.N. Robertson, T.S. Cameron, O.P. Knop, Alkylammonium lead halide. Part 1. Isolated PbI6 4 ions in (CH3NH3)4PbI6·2H2O. Can. J. Chem. 65, 1042 (1987)

    Article  Google Scholar 

  25. T. Oku, M. Zushi, Y. Imanishi, A. Suzuki, K. Suzuki, Microstructures and photovoltaic properties of perovskite type CH3NH3PbI3 compound. Appl. Phys. Express 7, 121601 (2014)

    Article  ADS  Google Scholar 

  26. R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi, F. De Angelis, Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014)

    Article  Google Scholar 

  27. Oku, T.: Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solr cells. In: Solar Cells, New Appeoaches and Reviews, Chapter 3, pp. 77–101. Intechopen

  28. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, G.V. Gustafsson, M.T. Trinh, S. Jin, X.Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015)

    Article  ADS  Google Scholar 

  29. C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, F.D. Angelis, The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014)

    Article  Google Scholar 

  30. J. Zhang, Z. Hua, L. Huanga, G. Yuea, J. Liua, X. Lua, Z. Hua, M. Shangb, L. Hanc, Y. Zhu, Bifunctional alkyl chain barriers for efficient perovskite solar cells. Chem. Commun. 51, 7047–7050 (2015)

    Article  Google Scholar 

  31. A. Mishra, Z. Ahmad, F. Touati, R.A. Shakoor, M.K. Nazeeruddin, One-dimensional facile growth of MAPbI3 perovskite micro-rods. RSC Adv. 9, 11589 (2019)

    Article  Google Scholar 

  32. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014)

    Article  Google Scholar 

  33. A. Dualeh, P. Gao, S. Seok II, M.K. Nazeeruddin, M. Gratzel, Thermal behavior of methylammonium lead–trihalide perovskite photovoltaic light harvesters. J Chem Matter 26, 6160–6164 (2014)

    Article  Google Scholar 

  34. W. Xie, Z. Gao, W.P. Pan, D. Hunter, A. Singh, R. Vaia, Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem. Mater. 13, 2979–2990 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support received from UPE Phase-II and Department of Science and Technology under Solar Energy Research Initiative DST/TM/SERI/FR/124(G) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandu B. Chaure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Chaure, N.B. Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique. Appl. Phys. A 125, 767 (2019). https://doi.org/10.1007/s00339-019-3047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3047-1

Navigation