Skip to main content
Log in

The synergistic role of pH and calcination temperature in sol–gel titanium dioxide powders

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticles were prepared by the sol–gel method starting from a volume of 1.5 mL of titanium tetraisopropoxide (TTIP) dissolved in 10 mL of ultrapure water milliQ grade (pH 5). The pH of the solution was adjusted by adding HNO3 and NaOH to reach an acidic and basic character of the sol, respectively. A wide pH range from 1 to 10 was explored. The prepared TiO2 nanopowders were annealed at three different calcination temperatures, 100, 450 and 800 °C for 3 h. The synergic effect of pH and calcination temperature on the structural and morphological properties of TiO2 nanoparticles was investigated by XRD and Raman analyses. At the lowest (100 °C) and highest (800 °C) calcination temperatures, we observed the dominance of anatase and rutile phases, respectively. A mixture of these phases was observed for the titania powders calcinated at 450 °C. In particular, the nanoparticles produced in strong acidic medium showed a coexistence of anatase and rutile with a dominance of rutile, whereas the anatase was the crystalline phase favored in alkaline medium environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. V.C. Gudla, F. Jensen, A. Simar, R. Shabadi, R. Ambat, Friction stir processed Al–TiO2 surface composites: anodising behaviour and optical appearance. Appl. Surf. Sci. 324, 554–562 (2015)

    ADS  Google Scholar 

  2. V.C. Gudla, V.E. Johansen, S. Canulescu, J. Schou, R. Ambat, Simulation of reflectance from white-anodised aluminium surfaces using polyurethane–TiO2 composite coatings. J. Mater. Sci. 50, 4565–4575 (2015)

    ADS  Google Scholar 

  3. R.U. Din, V.C. Gudla, M.S. Jellesen, R. Ambat, Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys. Surf. Coat. Technol. 296, 1–12 (2016)

    Google Scholar 

  4. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  ADS  Google Scholar 

  5. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011). https://doi.org/10.1016/j.surfrep.2011.01.001

    Article  ADS  Google Scholar 

  6. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012)

    Google Scholar 

  7. D. Delle Side, V. Nassisi, E. Giuffreda, L. Velardi, P. Alifano, A. Talà, S.M. Tredici, Highly antibacterial UHMWPE surfaces by implantation of titanium ions. Nucl. Instrum. Methods Phys. Res. Sect. B 331, 172–175 (2014). https://doi.org/10.1016/j.nimb.2013.11.027

    Article  ADS  Google Scholar 

  8. D. Delle Side, V. Nassisi, E. Giuffreda, L. Velardi, P. Alifano, A. Tala, S.M. Tredici, Antibacterial properties of composite UHMWPE/TiO2-x surfaces. Appl. Phys. A 117, 191–196 (2014)

    ADS  Google Scholar 

  9. V.N. Kruchinin, T.V. Perevalov, V.V. Atuchin, V.A. Gritsenko, A.I. Komonov, I.V. Korolkov, L.D. Pokrovsky, Cheng Wei Shih, Albert Chin, optical properties of TiO2 films deposited by reactive electron beam sputtering. J. Elect. Mater. 46(10), 6089–6095 (2017)

    ADS  Google Scholar 

  10. V.V. Atuchin, M.S. Lebedev, I.V. Korolkov, V.N. Kruchinin, E.A. Maksimovskii, S.V. Trubin, Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1−xO2 (0 ≤ x ≤ 1) films prepared by the ALD method. J. Mater. Sci.Mater. Electron. 30(1), 812–823 (2019)

    Google Scholar 

  11. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)

    ADS  Google Scholar 

  12. D.P. Macwan, N.D. Pragnesh, S. Chaturvedi, A review on nano-TiO2 sol–gel type synthesis and its applications. J. Mater. Sci. 46, 3669–3686 (2011)

    ADS  Google Scholar 

  13. C.J. Brinker, W.G. Scherer, Sol–gel science, chapters 1–2 (Academic Press, San Diego, 1990). https://doi.org/10.1016/B978-0-08-057103-4.50006-4. ISBN 9780080571034

    Chapter  Google Scholar 

  14. D.A.H. Hanaor, I. Chironi, I. Karatchevtseva, G. Triani, C.C. Sorrell, Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide. Adv. Appl. Ceram. 111, 149–158 (2012)

    Google Scholar 

  15. T. Kalaivani, P. Anilkumar, Role of temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation method. Silicon 10, 1679–1686 (2018)

    Google Scholar 

  16. N. Wetchakun, S. Phanichphant, Effect of temperature on the degree of anatase-rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol–gel method. Curr. Appl. Phys. 8, 343–346 (2008)

    ADS  Google Scholar 

  17. S.A. Ibrahim, S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol–gel method. Adv. Mater. Res. 173, 184–189 (2011)

    Google Scholar 

  18. E. Oseghe, P. Ndungu, S. Jonnalagadda, Synthesis, characterization, and application of TiO2 nanoparticles–effect of pH adjusted solvent. J. Adv. Oxid. Technol. 18, 253–263 (2015)

    Google Scholar 

  19. J. Grzechulska, A.W. Morawski, Appl. Catal. B 36, 45–51 (2002)

    Google Scholar 

  20. K. Suttiponparnit, J.K. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Nanoscale Res. Lett. 6, 1–8 (2011)

    Google Scholar 

  21. J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer, Res. Chem. Intermed. 34(4), 381–392 (2008)

    Google Scholar 

  22. O.K. Dalrymple, D.H. Yeh, M.A. Trotz, J. Chem. Technol. Biotechnol. 82(2), 121–134 (2007)

    Google Scholar 

  23. G.S. Devi, K.S. Kumar, K.S. Reddy, Effect of pH on synthesis of single-phase titania (TiO2) nanoparticles and its characterization. Part. Sci. Technol. 33, 219–223 (2015)

    Google Scholar 

  24. M. Tsega, F.B. Dejene, Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 3, e00246 (2017)

    Google Scholar 

  25. A. Molea, V. Popescu, N.A. Rowson, A.M. Dinescu, Powder Technol. 253, 22–28 (2014)

    Google Scholar 

  26. B. Tryba, M. Tygielska, C. Colbeau-Justin, E. Kusiak-Nejman, J. Kapica-Kozar, R. Wróbel, G. Zołnierkiewicz, N. Guskosc, Mater. Res. Bull. 84, 152–161 (2016)

    Google Scholar 

  27. J. Yu, J.C. Yu, M.K.-P. Leung, W. Ho, B. Cheng, X. Zhao, J. Zhao, Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal. 217, 69–78 (2003)

    Google Scholar 

  28. B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. J. Colloid Interface Sci. 442, 1–7 (2015)

    ADS  Google Scholar 

  29. S. Cassaignon, M. Koelsch, J.-P. Jolivet, From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): thermohydrolysis and oxidation in aqueous medium. J. Phys. Chem. Solids 68, 695–700 (2007)

    ADS  Google Scholar 

  30. C.-C. Wang, J.Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113–3120 (1999)

    Google Scholar 

  31. S.L. Isley, R.L. Penn, Titanium dioxide nanoparticles: effect of sol–gel pH on phase composition, particle size, and particle growth mechanism. J. Phys. Chem. C 112, 4469–4474 (2008). https://doi.org/10.1021/jp710844d

    Article  Google Scholar 

  32. N.M. Kinsinger, A. Dudchenko, A. Wong, D. Kisailus, Synergistic effect of pH and phase in a nanocrystalline titania photocatalyst. ACS Appl. Mater. Interfaces 5, 6247–6254 (2013)

    Google Scholar 

  33. D. Jassby, J.F. Budarz, M. Wiesner, Environ. Sci. Technol. 46, 6934–6941 (2012)

    ADS  Google Scholar 

  34. D. Li, X. Cheng, X. Yu, Z. Xing, Preparation and characterization of TiO2-based nanosheets for photocatalytic degradation of acetylsalicylic acid: influence of calcination temperature. Chem. Eng. J. 279, 994–1003 (2015)

    Google Scholar 

  35. W. Ma, Z. Lu, M. Zhang, Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A 66, 621–627 (1998)

    ADS  Google Scholar 

  36. S. Challagulla, K. Tarafder, R. Ganesan, S. Roy, Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 7, 8783 (2017)

    ADS  Google Scholar 

  37. N. Negishi, K. Takeuchi, Structural changes of transparent TiO2 thin films with heat treatment. Mater. Lett. 38, 150–153 (1999)

    Google Scholar 

  38. D. Bersani, P.P. Lottici, X.-Z. Ding, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett. 72, 73 (1998)

    ADS  Google Scholar 

  39. M. Ivanda, S. Music, M. Gotic, A. Turkovic, A.M. Tonejc, O. Gamulin, The effects of crystal size on the Raman spectra of nanophase TiO2. J. Mol. Struct. 480, 641–644 (1999)

    ADS  Google Scholar 

  40. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D 33, 912–916 (2000)

    ADS  Google Scholar 

  41. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J. Appl. Phys. 98, 074305 (2005)

    ADS  Google Scholar 

  42. A. Golubović, M. Šćepanović, A. Kremenović, S. Aškrabić, V. Berec, Z. Dohčević-Mitrović, Z.V. Popović, Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J. Sol-Gel. Sci. Technol. 49, 311–314 (2009)

    Google Scholar 

  43. J.C. Parker, R.W. Siegel, Appl. Phys. Lett. 57, 943 (1990)

    ADS  Google Scholar 

  44. Y. Shao, D. Tang, J. Sun, Y. Lee, W. Xiong, Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by sol-gel technique. China Part. 2, 119–123 (2004)

    Google Scholar 

  45. R.A. Spurr, H. Myers, Anal. Chem. 29, 760–762 (1957)

    Google Scholar 

  46. G.K. Williamson, W.H. Hall, X-ray Line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Velardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velardi, L., Scrimieri, L., Serra, A. et al. The synergistic role of pH and calcination temperature in sol–gel titanium dioxide powders. Appl. Phys. A 125, 735 (2019). https://doi.org/10.1007/s00339-019-3038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3038-2

Navigation