Skip to main content
Log in

Morphology stability of polymethylmethacrylate nanospheres formed in water–acetone dispersion medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this study is to develop a manufacturing technique of polymethylmethacrylate (PMMA) nanospheres to produce a more stable opal template. Water–acetone mixture was used as a dispersion medium to synthesize a PMMA opal structure. Morphology features, IR vibrational spectra and glass transition temperatures of the PMMA nanospheres formed in the water–acetone dispersion medium (nanospheres A) have been studied comparing with the same prepared in distilled water solution without acetone (nanospheres B). A dependence of a shrinkage degree of the nanoparticles on the acetone volume has been investigated. It has been revealed that under an electron beam action the shrinkage degree of the nanospheres A is in the range of 7–16% while the shrinkage of the nanospheres B is 18–25% at the same conditions. The nanospheres A are less flexible and soft as compared to the nanospheres B. Additionally, an ability of the PMMA nanoparticles fabricated in the water–acetone dispersion medium to form the ordered opal structures is demonstrated to be the similar to the nanospheres B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Ali, K.J.B.A. Karim, N.A. Buang, Polym. Rev. 55, 678 (2015)

    Google Scholar 

  2. F.A. Behbahani, S.M. Vaez Allaei, H.G. Motlagh, H. Eslami, V.A. Harmandaris, Soft Matter 51, 7518 (2018)

    Google Scholar 

  3. R. Goseki and T. Ishizone, in Encycl. Polym. Nanomater. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), pp. 1702–1710

  4. N. Berrahou, A. Mokaddem, B. Doumi, S. Hiadsi, N. Beldjoudi, A. Boutaous, Polym. Bull. 73, 3007 (2016)

    Google Scholar 

  5. F. Adams, P. Pahl, B. Rieger, Chem. A Eur. J. 24, 509 (2018)

    Google Scholar 

  6. Y. Chen, L. Zhang, G. Chen, Electrophoresis 29, 1801 (2008)

    Google Scholar 

  7. C. Bouzigues, T. Gacoin, A. Alexandrou, ACS Nano 5, 8488 (2011)

    Google Scholar 

  8. S. Lazzari, D. Moscatelli, F. Codari, M. Salmona, M. Morbidelli, L. Diomede, J. Nanoparticle Res. 14, 920 (2012)

    ADS  Google Scholar 

  9. W.-K. Kuo, H.-P. Weng, J.-J. Hsu, H. Yu, Appl. Sci. 6, 67 (2016)

    Google Scholar 

  10. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, Nature 394, 251 (1998)

    ADS  Google Scholar 

  11. A. Bearzotti, A. MacAgnano, S. Pantalei, E. Zampetti, I. Venditti, I. Fratoddi, M. Vittoria Russo, J. Phys. Condens. Matter 20, 474207 (2008)

    ADS  Google Scholar 

  12. H. Hashim, N.I. Adam, N.H.M. Zaki, Z.S. Mahmud, C.M.S. Said, M.Z.A. Yahya, A.M.M. Ali, CSSR 2010–2010 Int. Conf. Sci. Soc. Res. (Kuala Lumpur, Malaysia 2010), pp. 485–488

  13. K. Gipson, K. Stevens, P. Brown, J. Ballato, J. Spectrosc. 2015, 9 (2015)

    Google Scholar 

  14. I. Venditti, Materials (Basel) 10, 97 (2017)

    ADS  Google Scholar 

  15. G. Bin Lee, S.H. Chen, G.R. Huang, W.C. Sung, Y.H. Lin, Sensors Actuators. B Chem. 75, 142 (2001)

    Google Scholar 

  16. L. Xu, C. Aumaitre, Y. Kervella, G. Lapertot, C. Rodríguez-Seco, E. Palomares, R. Demadrille, P. Reiss, Adv. Funct. Mater. 10, 97 (2018)

    Google Scholar 

  17. X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 173 (2013)

    Google Scholar 

  18. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Adv. Mater. 23, 2675 (2011)

    Google Scholar 

  19. B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, Z. Song, A.C.S. Appl, Mater. Interfaces 7, 25211 (2015)

    Google Scholar 

  20. D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 1, 16142 (2016)

    ADS  Google Scholar 

  21. M.K. Assadi, H. Hanaei, N.M. Mohamed, R. Saidur, S. Bakhoda, R. Bashiri, M. Moayedfar, Appl. Phys. A Mater. Sci. Process. 122, 821 (2016)

    ADS  Google Scholar 

  22. M. Perween, D.B. Parmar, G.R. Bhadu, D.N. Srivastava, Analyst 139, 5919 (2014)

    ADS  Google Scholar 

  23. X. Wang, P. Wang, Y. Jiang, Q. Su, J. Zheng, Compos. Sci. Technol. 104, 1 (2014)

    Google Scholar 

  24. J.H. Sung, H.S. Kim, H.J. Jin, H.J. Choi, I.J. Chin, Macromolecules 37, 9899 (2004)

    ADS  Google Scholar 

  25. L. Zhang, Y. Ren, S. Peng, D. Guo, S. Wen, J. Luo, G. Xie, Nanoscale 11, 8237 (2019)

    Google Scholar 

  26. A. Bettencourt, A.J. Almeida, J. Microencapsul. 29, 353 (2012)

    Google Scholar 

  27. I. Venditti, J. King Saud Univ. Sci. 31, 398 (2019)

    Google Scholar 

  28. Q. Liu, T. Yang, W. Feng, F. Li, J. Am. Chem. Soc. 134, 5390 (2012)

    Google Scholar 

  29. Zhang Li.X, Zhao D, Nano Today 8, 643 (2013)

    Google Scholar 

  30. Y. Liu, D. Tu, H. Zhu, X. Chen, Chem. Soc. Rev. 42, 6924 (2013)

    Google Scholar 

  31. M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, Nano Lett. 8, 3834 (2008)

    ADS  Google Scholar 

  32. J. Li, D. Chen, G. Chen, Anal. Lett. 38, 1127 (2005)

    Google Scholar 

  33. O. Glushko, R. Brunner, R. Meisels, S. Kalchmair, G. Strasser, Opt. Express 20, 17174 (2012)

    ADS  Google Scholar 

  34. M.D. Nielsen, C. Jacobsen, N.A. Mortensen, J.R. Folkenberg, H.R. Simonsen, Opt. Express 12, 1372 (2004)

    ADS  Google Scholar 

  35. L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, L.C. Kimerling, Appl. Phys. Lett. 93, 221105 (2008)

    ADS  Google Scholar 

  36. S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, Jao van de Lagemaat, and A. J. Frank 125, 6306 (2003)

    Google Scholar 

  37. H. Wang, X. Gu, R. Hu, J.W.Y. Lam, D. Zhang, B.Z. Tang, J. van de Lagemaat, A.J. Frank, Y.-P. Li, Y.-G. Ma, H.-B. Sun, D. Zhang, D. Wiersma, G.A. Ozin, Chem. Sci. 7, 5692 (2016)

    Google Scholar 

  38. T.R. Paxton, J. Colloid Interface Sci. 31, 19 (1969)

    ADS  Google Scholar 

  39. Z.Z. Gu, Y.H. Yu, H. Zhang, H. Chen, Z. Lu, A. Fujishima, O. Sato, Appl. Phys. A Mater. Sci. Process. 81, 47 (2005)

    ADS  Google Scholar 

  40. D. Zou, J.J. Aklonis, R. Salovey, J. Polym. Sci. Part A-1 Polym. Chem. 30, 2443 (1992)

    Google Scholar 

  41. J.C. Ruiz-Morales, J. Canales-Vázquez, J. Peña-Martínez, D. Marrero-López, J.T.S. Irvine, P. Núñez, J. Mater. Chem. 16, 540 (2006)

    Google Scholar 

  42. P.J. Lou, W.F. Cheng, Y.C. Chung, C.Y. Cheng, L.H. Chiu, T.H. Young, J. Biomed. Mater. Res. Part A 88A, 849 (2008)

    Google Scholar 

  43. G.I.N. Waterhouse, W.T. Chen, A. Chan, D. Sun-Waterhouse, ACS Omega 3, 9658 (2018)

    Google Scholar 

  44. Z.Z. Gu, A. Fujishima, O. Sato, Chem. Mater. 14, 760 (2002)

    Google Scholar 

  45. J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, Z. Yin, J. Mater. Chem. C 1, 6541 (2013)

    Google Scholar 

  46. T. Xia, W. Luo, F. Hu, W. Qiu, Z. Zhang, Y. Lin, X.Y. Liu, A.C.S. Appl, Mater. Interfaces 9, 22037 (2017)

    Google Scholar 

  47. Y. Wang, S. Dou, L. Shang, P. Zhang, X. Yan, K. Zhang, J. Zhao, Y. Li, Crystals 8, 453 (2018)

    Google Scholar 

  48. I.V. Nemtsev, I.A. Tambasov, A.A. Ivanenko, V.Y. Zyryanov, Photonics Nanostructures Fundam. Appl. 28, 37 (2018)

    ADS  Google Scholar 

  49. C.S. Lee, Z. Dai, S.Y. Jeong, C.H. Kwak, B.Y. Kim, D.H. Kim, H.W. Jang, J.S. Park, J.H. Lee, Chem. A Eur. J. 22, 7102 (2016)

    Google Scholar 

  50. N. Matsuura, S. Yang, P. Sun, H.E. Ruda, Appl. Phys. A Mater. Sci. Process. 81, 379 (2005)

    ADS  Google Scholar 

  51. E. Armstrong, C. O’Dwyer, J. Mater. Chem. C 3, 6109 (2015)

    Google Scholar 

  52. P.P. Shetty, R. Zhang, J.P. Angle, P.V. Braun, J.A. Krogstad, Chem. Mater. 30, 1648 (2018)

    Google Scholar 

  53. K. Kamitani, T. Hyodo, Y. Shimizu, M. Egashira, J. Mater. Sci. 45, 3602 (2010)

    ADS  Google Scholar 

  54. C.G. Otoni, M.V. Lorevice, M.R.D. Moura, L.H.C. Mattoso, Carbohydr. Polym. 185, 105 (2018)

    Google Scholar 

  55. M.E. Diken, S. Doğan, Y. Turhan, M. Doğan, Int. J. Polym. Mater. Polym. Biomater. 18, 54 (2018)

    Google Scholar 

  56. N.A. Rangel-Vázquez, J.R. Campos-Cruz, J.E. Jaime-Leal, R. Rangel-Vázquez, in Hybrid Polym. Compos. Mater. Process., (Matthew Deans, Cambridge, 2017), pp. 307–330

  57. A. Alonso Ipiña, M. Lázaro Urrutia, D. Lázaro Urrutia, D. Alvear Portilla, J. Phys. Conf. Ser. 1107, 032011 (2018)

    Google Scholar 

  58. R. D’Amato, I. Venditti, M.V. Russo, M. Falconieri, J. Appl. Polym. Sci. 102, 4493 (2006)

    Google Scholar 

  59. R. De Angelis, I. Venditti, I. Fratoddi, F. De Matteis, P. Prosposito, I. Cacciotti, L. D’Amico, F. Nanni, A. Yadav, M. Casalboni, M.V. Russo, J. Colloid Interface Sci. 414, 24 (2014)

    ADS  Google Scholar 

  60. O.V. Shabanova, M.A. Korshunov, I.V. Nemtsev, A.V. Shabanov, Nanotechnol. Russ. 11, 633 (2016)

    Google Scholar 

  61. S.E. Shim, E. Al, K. Kim, S. Oh, S. Choe, E. Al, Macromol. Res. 12, 240 (2004)

    Google Scholar 

  62. B. Liu, Y. Wang, M. Zhang, H. Zhang, Polymers (Basel). 8, 55 (2016)

    Google Scholar 

  63. I. Nemtsev, Vestn. SibSAU 1, 126 (2012)

    Google Scholar 

  64. J.-H. Yoo, H.-J. Kwon, D. Paeng, J. Yeo, S. Elhadj, C.P. Grigoropoulos, Nanotechnology 27, 145604 (2016)

    Google Scholar 

  65. Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang, S. Chen, L. Wang, J. Zi, Y. Song, L. Jiang, J. Am. Chem. Soc. 134, 17053 (2012)

    Google Scholar 

  66. Q. Ye, Z. Zhang, H. Jia, W. He, X. Ge, J. Colloid Interface Sci. 253, 279 (2002)

    ADS  Google Scholar 

  67. T.Y. Kwon, J.Y. Ha, J.N. Chun, J.S. Son, K.H. Kim, Biomed. Res. Int. 2014, 6 (2014)

    Google Scholar 

  68. M.J. Ballard, D.H. Napper, R.G. Gilbert, J. Polym. Sci. Polym. Chem. Ed. 22, 3225 (1984)

    ADS  Google Scholar 

  69. K.E.J. Barrett, in John Wiley Sons Ltd (Wiley, New York, 1974), p. 322

    Google Scholar 

  70. R.M. Fitch, C.H. Tsai, in Polym. Colloids (1971), pp. 73–102.

  71. A.L. Tasker, J.P. Hitchcock, L. He, E.A. Baxter, S. Biggs, O.J. Cayre, J. Colloid Interface Sci. 484, 10 (2016)

    ADS  Google Scholar 

  72. J. Aubry, F. Ganachaud, J.P.C. Addad, B. Cabane, Langmuir 25, 1970 (2009)

    Google Scholar 

  73. A.V. Shabanov, O.V. Shabanova, M.A. Korshunov, Colloid J. 76, 113 (2014)

    Google Scholar 

  74. Z. Li, H. Liu, L. Zeng, H. Liu, Y. Wang, J. Mater. Sci. 51, 9005 (2016)

    ADS  Google Scholar 

  75. K.E.J. Barrett, H.R. Thomas, J. Polym. Sci. Part A Polym. Chem. 7, 2621 (1969)

    ADS  Google Scholar 

  76. K.F. Silveira, I.V.P. Yoshida, S.P. Nunes, Polymer (Guildf). 36, 1425 (1995)

    Google Scholar 

  77. R.A.A. Tahrin, N.S. Azma, S. Kassim, N.A. Harun, in AIP Conference Proceedings (American Institute of Physics, 2017), p. 1885.

  78. G. Centeno, G. Sánchez-Reyna, J. Ancheyta, J.A.D. Muñoz, N. Cardona, Fuel 90, 3561 (2011)

    Google Scholar 

  79. M. Hoang, Tuning of Viscosity and Density of Non-Newtonian Fluids through Mixing Process Using Multimodal Sensors, Sensor Fusion and Models (Porsgrunn, Norway, 2016), p. 31

    Google Scholar 

  80. A. Stein, Microporous Mesoporous Mater. 44–45, 227 (2001)

    Google Scholar 

  81. J. Gutmann, J. Posdziech, M. Peters, L. Steidl, R. Zentel, H. Zappe, and J. C. Goldschmidt, in Proceedings of SPIE (2012), p. 8438.

  82. B. Hatton, L. Mishchenko, S. Davis, K.H. Sandhage, J. Aizenberg, Proc. Natl. Acad. Sci. 107, 10354 (2010)

    ADS  Google Scholar 

  83. K. Nakanishi, J. Pharm. Sci. 52, 716 (1963)

    Google Scholar 

  84. L.J. Bellamy, J. Chem. Educ. 36, 366 (1963)

    Google Scholar 

  85. J. Sharma, X. Zhang, T. Sarker, X. Yan, L. Washburn, H. Qu, Z. Guo, A. Kucknoor, S. Wei, Polymer (Guildf). 55, 3261 (2014)

    Google Scholar 

  86. D.W. van Krevelen, K. te Nijenhuis, Properties of Polymers, Fourth Edition: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions (2009), pp. 167–172

  87. T.G. Fox, B.S. Garrett, W.E. Goode, S. Gratch, J.F. Kincaid, A. Spell, J.D. Stroupe, J. Am. Chem. Soc. 80, 1768 (1958)

    Google Scholar 

  88. K.C. Jha, H. Zhu, A. Dhinojwala, M. Tsige, Langmuir 30, 12775 (2014)

    Google Scholar 

  89. M.M. Demir, M. Memesa, P. Castignolles, G. Wegner, Macromol. Rapid Commun. 27, 763 (2006)

    Google Scholar 

  90. P.N. Tzounis, D.V. Argyropoulou, S.D. Anogiannakis, D.N. Theodorou, Macromolecules 51, 6878 (2018)

    ADS  Google Scholar 

  91. S. Havriliak, N. Roman, Polymer (Guildf). 7, 387 (1966)

    Google Scholar 

  92. H.A. Willis, V.J.I. Zichy, P.J. Hendra, Polymer (Guildf). 10, 737 (1969)

    Google Scholar 

  93. S.K. Dirlikov, J.L. Koenig, Appl. Spectrosc. 33, 555 (1979)

    ADS  Google Scholar 

  94. S.N. Tripathi, P. Saini, D. Gupta, V. Choudhary, J. Mater. Sci. 48, 6223 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Center of collective use of FRC KSC SB RAS for the provided equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Nemtsev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemtsev, I.V., Shabanova, O.V., Shestakov, N.P. et al. Morphology stability of polymethylmethacrylate nanospheres formed in water–acetone dispersion medium. Appl. Phys. A 125, 738 (2019). https://doi.org/10.1007/s00339-019-3036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3036-4

Navigation