Skip to main content
Log in

Selective rear-side ablation of aluminum thin layers with ultrashort-pulsed laser radiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent years, several applications for laser ablation of thin metal layers from the fused silica substrate side have been studied. The rear-side ablation is a highly effective ablation method for thin layer structuring and reveals a high structuring quality. Therefore, the present work dealt with the selective rear-side ablation of thin aluminum layers (10–50 nm) on fused silica with ultrashort-pulsed laser radiation (λ = 1028 nm, \( \tau_{\text{H}} \) = 0.2–10 ps and w0,86 = 15.2 µm). The influences of pulse duration and layer thickness on the ablation thresholds as well as the incubation coefficients were determined. For layer thicknesses of 30 and 50 nm, a decrease of the ablation threshold with increasing pulse duration was determined. Whereas, the ablation threshold remained constant for layer thicknesses of 10 and 20 nm. Different morphologies were observed depending on the process parameters. The rear-side ablation of aluminum proceeded over the melting phase and no lift-off process had taken place. In addition to experimental investigations, calculations were carried out to determine the theoretical threshold fluences. The theoretical values were compared to experimental data. With the help of these investigations, the quality of the structuring of aluminum layers can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.T. Read, A.A. Volinsky, in Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Realiability, Packaging, vol. I, ed. by E. Suhir, C.P. Wong, Y.C. Lee (Springer, Berlin, 2007), pp. 135-136

  2. M. Eslamian, Nano-Micro Lett. 9, 3 (2017)

    Article  Google Scholar 

  3. M. Olbrich, E. Punzel, P. Lickschat, S. Weißmantel, A. Horn, Phys. Proc. 83, 93–103 (2016)

    Article  ADS  Google Scholar 

  4. G.L. Schnable, Proc. IEEE 57, 1570–1580 (1969)

    Article  Google Scholar 

  5. H.C. Card, IEEE Trans. Electron. Dev. 23, 538–544 (1976)

    Article  ADS  Google Scholar 

  6. Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)

    Article  ADS  Google Scholar 

  7. S. Zoppel, H. Huber, G.A. Reider, Appl. Phys. A 89, 161–163 (2007)

    Article  ADS  Google Scholar 

  8. L. Pabst, F. Ullmann, R. Ebert, H. Exner, Appl. Phys. A 125, 241 (2018)

    Article  ADS  Google Scholar 

  9. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 1–11 (2002)

    Google Scholar 

  10. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  11. G. Heise, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Proceedings of Spie 7925 (2011)

  12. A. Ott, Oberflächenmodifikation von Aluminiumlegierungen mit Laserstrahlung: Prozessverständnis und Schichtcharakterisierung (Herbert Utz Verlag, München, 2009), pp. 205–206

    Google Scholar 

  13. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Appl. Phys. 45, 315303 (2012)

    Google Scholar 

  14. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Appl. Phys. A 109, 409–420 (2012)

    Article  ADS  Google Scholar 

  15. W. Wang, X. Mei, G. Jiang, K. Wang, C. Yang, Opt. Laser Technol. 44, 153–158 (2012)

    Article  ADS  Google Scholar 

  16. M. Domke, S. Rapp, H. Huber, Phys. Proc. 39, 717–725 (2012)

    Article  ADS  Google Scholar 

  17. M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H.P. Huber, M. Schmidt, Phys. Proc. 56, 1007–1014 (2014)

    Article  ADS  Google Scholar 

  18. A.D. Rakic, Appl. Opt. 34, 4755–4767 (1995)

    Article  ADS  Google Scholar 

  19. F.M. Becker, H. Bossek et al., Formelsammlung bis zum Abitur (Duden Schulbuch, Berlin, 2006), pp. 74–78

    Google Scholar 

  20. D.W. Doerr, Femtosecond Laser Microprocessing of Aluminium Films and Quartz, Dissertation University of Nebraska–Licoln, 19-20, 22, 31 (2007)

  21. P. Lickschat, Microstructuring of steel using picosecond and femtosecond laser pulses, master thesis University of Applied Sciences—Mittweida, 18 (2013)

  22. H. Yamada, T. Sano, T. Nakayama, I. Miyamoto, Appl. Surf. Sci. 197–198, 411–415 (2002)

    Article  ADS  Google Scholar 

  23. T.C. Röder, J.R. Köhler, Appl. Phys. Lett. 100, 071603 (2012)

    Article  ADS  Google Scholar 

  24. B. Hopp, C.S. Vass, T. Smausz, Appl. Surf. Sci. 253, 7922–7925 (2007)

    Article  ADS  Google Scholar 

  25. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, 6803–6810 (1999)

    Article  ADS  Google Scholar 

  26. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749–1761 (1996)

    Article  ADS  Google Scholar 

  27. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, J. Appl. Phys. 101, 043506 (2007)

    Article  ADS  Google Scholar 

  28. M.L. Naudeau, R.J. Law, T.S. Luk, T.R. Nelson, S.M. Cameron, Opt. Express 14, 6194–6200 (2006)

    Article  ADS  Google Scholar 

  29. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  30. F. Di Niso, C. Caudiusi, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugara, Opt. Express 22, 12200–12210 (2014)

    Article  ADS  Google Scholar 

  31. J. Byskov-Nielsen, J.M. Savolainen, M.S. Christensen, Appl. Phys. A 101, 97–101 (2010)

    Article  ADS  Google Scholar 

  32. L. Gallais, E. Bergeret, B. Wang, M. Guerin, E. Benevent, Appl. Phys. A 115, 177–188 (2014)

    Article  ADS  Google Scholar 

  33. D. Scorticati, G.W. Römer, D.F. de Lange, B.H. n’t Veld, J. Nanophotonics 6, 1–11 (2012)

    Article  Google Scholar 

  34. B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, U. Hunziker, Phys. Proc. 12, 164–171 (2011)

    Article  ADS  Google Scholar 

  35. J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Appl. Phys. A 71, 657–665 (2010)

    Article  ADS  Google Scholar 

  36. P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275–287 (2004)

    Article  ADS  Google Scholar 

  37. M. Weikert, Oberflächenstrukturieren mit ultrakurzen Laserpulsen, Dissertation, Universität Stuttgart (2005) 29

  38. T. Viertel, L. Pabst, R. Ebert, H. Exner, 10. Mittweidaer Lasertagung Scientific Reports Nr. 2, 131–136 (2017)

  39. R.L. Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322–331 (2005)

    Article  ADS  Google Scholar 

  40. I. Miyamotot, K. Cvecek, Y. Okamoto, M. Schmidt, Phys. Proc. 5, 483–493 (2010)

    Article  ADS  Google Scholar 

  41. I.M. Abdulagatov, S.N. Emirov, T.A. Tsomaeva, KhA Gairbekov, S.Ya. Askerov, N.A. Magomedova, J. Phys. Chem. Solids 61, 779–787 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the European Social Fund for Germany (ESF) for funding the Project ULTRALAS No. 8221818. This project is co-financed by tax revenue on the basis of the budget adopted by the Saxon Landtag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Viertel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 Optical and thermo-physical properties of bulk aluminum
Table 4 Thermo-physical properties of fused silica

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viertel, T., Pabst, L., Ebert, R. et al. Selective rear-side ablation of aluminum thin layers with ultrashort-pulsed laser radiation. Appl. Phys. A 125, 739 (2019). https://doi.org/10.1007/s00339-019-3034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3034-6

Navigation