Skip to main content
Log in

Effects of Benzotriazole on nano-mechanical properties of zirconia–alumina–Benzotriazole nanocomposite coating deposited on Al 2024 by the sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The concentration of Benzotriazole plays an important role in the mechanical properties of ceramic coatings. In this work, hybrid nano-composite zirconia–alumina–Benzotriazole coatings with 1.2, 2.4, 3.6 and 4.8% of Benzotriazole are deposited on the Al 2024 substrate by the sol–gel technique. The phase, structure, and morphology are determined by grazing-incidence X-ray diffraction, Fourier-transform infrared spectroscopy, and field-emission scanning electron microscopy and the nano-mechanical properties are assessed by atomic force microscopy at loads of 50 and 60 µN. Uniform and homogenous amorphous coatings are deposited at 150 °C and the thicknesses of the zirconia–alumina and zirconia–alumina–Benzotriazole coatings with 1.2%, 2.4%, 3.6%, and 4.8% Benzotriazole are 670, 560, 750, 790, and 1040 nm, respectively. The surface roughness of the coatings decreases by 3.5 and 8 times after introducing 1.2% and 3.6% Benzotriazole to the coatings, respectively, but further increasing the Benzotriazole concentration from 3.6 to 4.8% decreases the hardness, strength, and maximum shear tension. The optimal concentration of Benzotriazole depends on the Hertzian pressure and the hardness and strength of the zirconia–alumina–3.6% Benzotriazole under a load of 60 µN are 23 and 46 times higher than those of the zirconia–alumina coating. The smallest friction coefficient of 0.11 is observed at a load of 60 µN and abrasive wear and shear are dominant.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications (Wiley, New York, 2009)

    Google Scholar 

  2. A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel. Prog. Org. Coat. 55(3), 244–253 (2006)

    Article  Google Scholar 

  3. A. Shanaghi, M. Kadkhodai, Investigation of high concentration of benzotriazole on corrosion behaviour of titania–benzotriazole hybrid nanostructured coating applied on Al 7075 by the sol–gel method. Corros. Eng. Sci. Technol. 52(5), 332–342 (2017)

    Article  Google Scholar 

  4. F. Maia, J. Tedim, A.D. Lisenkov, A.N. Salak, M.L. Zheludkevich, M.G. Ferreira, Silica nanocontainers for active corrosion protection. Nanoscale 4(4), 1287–1298 (2012)

    Article  ADS  Google Scholar 

  5. M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. Möhwald, M.G. Ferreira, Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem. Mater. 19(3), 402–411 (2007)

    Article  Google Scholar 

  6. I. Recloux, M. Mouanga, M.E. Druart, Y. Paint, M.G. Olivier, Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys. Appl. Surf. Sci. 346, 124–133 (2015)

    Article  ADS  Google Scholar 

  7. M. Zheludkevich, R. Serra, M. Montemor, K. Yasakau, I.M. Salvado, M. Ferreira, Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochim. Acta 51(2), 208–217 (2005)

    Article  Google Scholar 

  8. M.A. Dominguez-Crespo, A. Garcia-Murillo, A.M. Torres-Huerta, F.J. Carrillo-Romo, E. Onofre-Bustamante, C. Yanez-Zamora, Characterization of ceramic sol–gel coatings as an alternative chemical conversion treatment on commercial carbon steel. Electrochim. Acta 54, 2932–2940 (2009)

    Article  Google Scholar 

  9. E. Celik, I. Keskin, I. Kayatekin, F.A. Azem, E. Özkan, Al2O3–TiO2 thin films on glass substrate by sol–gel technique. Mater. Char. 58, 349–357 (2007)

    Article  Google Scholar 

  10. L. Claire, G. Marie, G. Julien, S. Jean-Michel, R. Jean, M. Marie-Joëlle, R. Stefano, F. Michele, New architectured hybrid sol–gel coatings for wear and corrosion protection of low-carbon steel. Prog. Org. Coat. 99, 337–345 (2016)

    Article  Google Scholar 

  11. Y. Adraider, Y.X. Pang, F. Nabhani, S.N. Hodgson, M.C. Sharp, A. Al-Waidh, Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol–gel technique. Ceram. Int. 39(8), 9665–9670 (2013)

    Article  Google Scholar 

  12. D. Wang, G.P. Bierwagen, Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327–338 (2009)

    Article  Google Scholar 

  13. S.M. Attia, J. Wang, G. Wu, J. Shen, J. Ma, Review on sol–gel derived coatings: process, techniques and optical application. J. Mater. Sic. Technol. 18, 211–218 (2002)

    Google Scholar 

  14. C.G. Dariva, A.F. Galio, Corrosion inhibitors-principles, mechanisms and applications, in Developments in Corrosion Protection, ed. by M. Aliofkhazraei (InTech, Publisher, 2014), pp. 365–380

    Google Scholar 

  15. M.S. Sharifiyan, A. Shanaghi, H. Moradi, P.K. Chu, Effects of high concentration of Benzotriazole on corrosion behavior of nanostructured titania–alumina composite coating deposited on Al 2024 by sol–gel method. Surf. Coat. Technol. 321, 36–44 (2017)

    Article  Google Scholar 

  16. C.A. Kawaguti, L.A. Chivacci, S.H. Pulcinelli, C.V. Santilli, V. Briois, Structural features of phosphateand sulfate modified zirconia prepared by sol–gel route. J. Sol–Gel. Sci. Technol. 32(1–3), 91–97 (2004)

    Article  Google Scholar 

  17. N. Agoudjil, S. Kermadi, A. Larbot, Synthesis of inorganic membrane by sol–gel process. Desalination 223(1), 417–424 (2008)

    Article  Google Scholar 

  18. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  ADS  Google Scholar 

  19. X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Char. 48(1), 11–36 (2002)

    Article  Google Scholar 

  20. B. Zeng, D. Xu, M. Tang, Y. Xiao, Y. Zhou, R. Xiong, Z. Li, Y. Zhou, Improvement of resistive switching performances via an amorphous ZrO2 layer formation in TiO2-based forming-free resistive random access memory. J. Appl. Phys. 116, 124514 (2014)

    Article  ADS  Google Scholar 

  21. M. Alqasaimeh, L.Y. Heng, M. Ahmad, A.S.S. Raj, T.L. Ling, A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors (Basel) 14(7), 13186–13209 (2014)

    Article  Google Scholar 

  22. X. Bokhimi, A. Morales, O. Novaro, M. Portilla, T. López, F. Tzompantzi, R. Gómez, Tetragonal nanophase stabilization in nondoped sol–gel zirconia prepared with different hydrolysis catalysts. J. Solid State Chem. 135(1), 28–35 (1998)

    Article  ADS  Google Scholar 

  23. M. Ocaña, V. Fornés, C.J. Serna, A simple procedure for the preparation of spherical oxide particles by hydrolysis of aerosols. Ceram. Int. 18(2), 99–106 (1992)

    Article  Google Scholar 

  24. S.K. Tiwari, M. Tripathi, R. Singh, Electrochemical behavior of zirconia based coatings on mild steel prepared by sol–gel method. Corros. Sci. 63, 334–341 (2012)

    Article  Google Scholar 

  25. D. Pickup, G. Wallidge, R. Newport, M. Smith, Structure of (ZrO2)x (SiO2)1−x xerogels (x = 0.1, 0.2, 0.3 and 0.4) from FTIR, 29 Si and 17 O MAS NMR and EXAFS. Phys. Chem. Chem. Phys. 1(10), 2527–2533 (1999)

    Article  Google Scholar 

  26. B. Stuart, Infrared Spectroscopy (Wiley, New York, 2005)

    Google Scholar 

  27. L. Chenglong, Y. Dazhi, L. Guoqiang, Q. Min, Corrosion resistance and hemocompatibility of multilayered Ti/TiN-coated surgical AISI 316L stainless steel. Mater. Lett. 59(29), 3813–3819 (2005)

    Article  Google Scholar 

  28. J. Bolton, X. Hu, In vitro corrosion testing of PVD coatings applied to a surgical grade Co–Cr–Mo alloy. J. Mater. Sci. Mater. Med. 13(6), 567–574 (2002)

    Article  Google Scholar 

  29. J.A. Thornton, High rate thick film growth. Annu. Rev. Mater. Sci. 7(1), 239–260 (1977)

    Article  ADS  Google Scholar 

  30. D. Zhou, H. Peng, L. Zhu, H. Guo, S. Gong, Microstructure, hardness and corrosion behaviour of Ti/TiN multilayer coatings produced by plasma activated EB-PVD. Surf. Coat. Technol. 258, 102–107 (2014)

    Article  Google Scholar 

  31. L. Ma, J. Cairney, M. Hoffman, P. Munroe, Characterization of TiN thin films subjected to nanoindentation using focused ion beam milling. Appl. Surf. Sci. 237(1), 627–631 (2004)

    Article  ADS  Google Scholar 

  32. X. Liu, G.J. Ma, G. Sun, Y.P. Duan, S.H. Liu, The influence of Ti doping on the mechanical properties of TaN film. Surf. Coat. Technol. 212, 128–133 (2012)

    Article  Google Scholar 

  33. F. Andreatta, P. Aldighieri, L. Paussa, R. Di Maggio, S. Rossi, L. Fedrizzi, Electrochemical behaviour of ZrO2 sol–gel pre-treatments on AA6060 aluminium alloy. Electrochim. Acta 52, 7545–7555 (2007)

    Article  Google Scholar 

  34. S. Ghasemi, A. Shanaghi, P.K. Chu, Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films 638, 96–104 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iranian Nanotechnology Initiative Council. The work was financially supported by Malayer University Research Grant, Iran National Science Foundation, Hong Kong Research Grants Council (RGC) General Research Funds (GRF) no. CityU 11205617, and City University of Hong Kong Strategic Research Grants (SRG) no. 7005105.

Funding

The article was funded by Ministry of Science Research and Technology (Grant no. 1396) and City University of Hong Kong (Grant nos. 9667122, 9667144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shanaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanaghi, A., Souri, A.R., Rafie, M. et al. Effects of Benzotriazole on nano-mechanical properties of zirconia–alumina–Benzotriazole nanocomposite coating deposited on Al 2024 by the sol–gel method. Appl. Phys. A 125, 728 (2019). https://doi.org/10.1007/s00339-019-3022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3022-x

Navigation