Skip to main content
Log in

Structural and magnetic properties of La1-xxMnO3 (x = 0.1; 0.2 and 0.3) manganites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The intrinsic objective of this work is to investigate the structural (RX, MEB, TGA and IR) and magnetic properties of La1 La1-xxMnO3 (x = 0.1; 0.2 and 0.3) series prepared through the sol–gel method. All these systems crystallize in the rhombohedral structure, \( {{\rm R}\bar{3}{\rm c}} \) space group, with the presence of a secondary phase for x = 0.3. We recorded the increase of a unit cell volume when the La deficiency amount increases, which refers to the fact that the vacancy is characterized by a radius other than zero. Another point that can be quoted is the increase of Mn–O–Mn bond angle and the decrease of Mn–O length with lanthanum deficiency (x), confirming the increase of the unit cell volume. The evaporation of water rose by the weight loss as a function of temperature in all samples. The FT-IR measurement revealed one peak corresponding to the Mn–O bond; this can be explained by the Jahn–Teller effect where the Mn ion makes an internal movement against the MnO6 octahedron. The thermal variation of the magnetization indicates the existence of a paramagnetic–ferromagnetic transition at Curie temperature with the increase of lanthanum deficiency. Saturation magnetization and Curie temperature increased with x (0.1; 0.2 and 0.3) deficiency. Hysteresis cycles confirm the ferromagnetic character at low temperatures and paramagnetic state with temperature increase. The increase of saturation magnetization can be accounted for in terms of the change of high spin Mn3+ to low spin Mn4+. Departing from the study of magnetic properties in terms of Arrott plots, the nature of magnetic transitions proves to be of second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magnetoresistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993)

    ADS  Google Scholar 

  2. R. Hamdi, A. Tozri, M. Smari, E. Dhahri, L. Bessais, Structural, magnetic, magnetocaloric and electrical studies of Dy0.5(Sr1_xCax) 0.5MnO3 manganites. J. Magn. Mater. 444, 270–279 (2017)

    ADS  Google Scholar 

  3. M. Smari, R. Hamdi, E. Dhahri, E.K. Hlil, L. Bessais, Correlation between magnetic and electric properties of La0.5Ca0.3Ag0.2MnO3based on critical behavior of resistivity. Ceram. Internat 8842, 316–319 (2016)

    Google Scholar 

  4. C. Martin, A. Maignan, F. Damay, M. Hervieu, B. Raveau, CMR effect in electron-doped manganites Ca1-xSmxMnO3. J. Solid State Chem. 134, 198–202 (1997)

    ADS  Google Scholar 

  5. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Pyhs. Rev. 82, 403–405 (1951)

    ADS  Google Scholar 

  6. A.J. Millis, P.B. Littlewood, B.I. Shraiman, double exchange alone does not explain the resistivity La1-xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995)

    ADS  Google Scholar 

  7. E. Dagotto, Nanoscale phase separation and colossal magnetoresistance (Springer, Berlin, Heidelberg, 2003)

    Google Scholar 

  8. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, 15622–15625 (1996)

    ADS  Google Scholar 

  9. M.B. Salamon, P. Lin, S.H. Chun, Colossal magnetoresistance is a Griffiths singularity. Phys. Rev. Lett. 88, 19 (2002)

    Google Scholar 

  10. A.H. Castro Neto, G. Castilla, B.A. Jones, Non-fermi liquid behavior and Griffiths phase in f-electron compounds. Phys. Rev. Lett. 81, 5620 (1998)

    ADS  Google Scholar 

  11. M.B. Salamon, M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)

    ADS  Google Scholar 

  12. A.J. Millis, Boris I. Shraiman, R. Mueller, Dynamic Jahn–Teller effect and colossal magnetoresistance in La1-xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996)

    ADS  Google Scholar 

  13. S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Barner, Comparative study of the magnetic and electrical properties of Pr1-xBaxMnO3-δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276–282 (2001)

    ADS  Google Scholar 

  14. N. Assoudi, I. Walha, K. Nouri, E. Dhahri, L. Bessais, Effect of synthesis route on structural, magnetic and magnetocaloric aspects and critical behavior of La0.6Ca0.3Ag0.1MnO3. J. Alloy. Compd. 753, 282–291 (2018)

    Google Scholar 

  15. I. Matosa, S. Seriob, M.E. Lopesc, M.R. Nunesd, M.E. Melo Jorged, Effect of the sintering temperature on the properties of nanocrystalline Ca1−xSmxMnO3 (0 ≤ x≤0.4) powders. J. Alloy. Compd. 509, 9617–9626 (2011)

    Google Scholar 

  16. A. Tozri, E. Dhahri, E.K. Hlil, Magnetic transition and magnetic entropy changes of La0.8Pb0.1MnO3 and La0.8Pb0.1Na0.1MnO3. Mater. Lett. 64, 2138–2141 (2010)

    Google Scholar 

  17. M. Triki, E. Dhahri, E.K. Hlil, Appearance of Griffiths phase in oxygen deficient La0.4Ca0.6MnO3_δ oxides. Mater. Lett. 84, 48–51 (2012)

    Google Scholar 

  18. S.V. Trukhanov, Investigation of Stability of Ordered Manganites. J. Exp. Theor. Phys. 101, 513–520 (2005)

    ADS  Google Scholar 

  19. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008)

    ADS  Google Scholar 

  20. F. Elleuch, M. Triki, M. Bekri, E. Dhahri, E.K. Hlil, J. Alloys Compd. 620, 249–255 (2015)

    Google Scholar 

  21. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated Exchange Interactions Formation at Low Temperatures and High Hydrostatic Pressures in La0.70Sr0.30MnO2.85. J. Exp. Theor. Phys. 111, 209–214 (2010)

    ADS  Google Scholar 

  22. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 83, 33–36 (2006)

    Google Scholar 

  23. A.V. Trukhanov, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and mössbauer study of gallium doped m-type barium hexaferrites. Ceram. Int. 430, 12822–12827 (2017)

    Google Scholar 

  24. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12–xAlxO19 (x ≤ 1.2) at room temperature. Phys. Solid State 59, 737–745 (2017)

    ADS  Google Scholar 

  25. S.V. Trukhanovl, A.V. Trukhanov, V.O. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloy. Compd. 689, 383–393 (2016)

    Google Scholar 

  26. V. Franco, J.S. Blazquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Mater. Res. 42, 305–342 (2012)

    Google Scholar 

  27. Jiyu Fan, Li Pi, Lei Zhang, Wei Tong, Langsheng Ling, Bo Hong, Yangguang Shi, Weichun Zhang, Lu Di, Yuheng Zhang, Phys. B 406, 2289–2292 (2011)

    ADS  Google Scholar 

  28. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloys Compd. 615, 553 (2014)

    Google Scholar 

  29. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mat 200, 1–23 (1999)

    ADS  Google Scholar 

  30. M. Khlifi, M. Bejar, O. EL Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2−x·xMnO3 (x = 0–0.20) manganites oxides. J. Alloy. Compd. 509, 7410–7415 (2011)

    Google Scholar 

  31. N. Abdelmoula, K. Guidara, A. Cheikh-Rouhou, E. Dhahri, Effects of the Oxygen Nonstoichiometry on the Physical Properties of La0.7Sr0.3MnO3-δδ Manganites (04d40.15). J. Solid State Chem. 151, 139–144 (2000)

    ADS  Google Scholar 

  32. P. Scherrer, Nachr. Ges. Wiss. Göttingen 98 (1994)

  33. J.P. Zhou, R. Dass, H.Q. Yin, J.S. Zhou, L. Rabenberg, J.B. Goodenough, J. Appl. Phys. 87, 5037–5039 (2000)

    ADS  Google Scholar 

  34. P. Žvátora, M. Veverka, P. Veverka, K. Knížek, E. Karel Závěta, Vladimír Král Pollert, G. Goglioc, E. Duguet, O. Kaman, Nfluence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites. J. Solid State Chem. 204, 373 (2013)

    ADS  Google Scholar 

  35. S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Solid State 50, 886 (2008)

    ADS  Google Scholar 

  36. J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 83, 52–60 (1989)

    ADS  Google Scholar 

  37. I. Fedorov, J. Lorenzana, P. Dore, G. De Marzi, P. Maselli, P. Calvani, Phys. Rev. B 60, 11875 (1999)

    ADS  Google Scholar 

  38. M. Yahia, H. Batis, Eur. J. Inorg. Chem. 2486 (2003)

  39. J.P. Zhou, R. Dass, H.Q. Yin, J.S. Zhou, L. Rabenberg, J.B. Goodenough, J. Appl. Phys. 87, 5037–5039 (2000)

    ADS  Google Scholar 

  40. A.R. Shelke, N.G. Deshpande, Effect of the cation substitution on the structural, electrical and magnetic properties in the electron-doped manganites. Ferroelectrics 516, 98–105 (2017)

    Google Scholar 

  41. S. Zemni, A. Gasmi, M. Boudard, M. Oumezzine, Effect of nominal strontium deficiency on the structure and the magnetic properties of La0.6Sr0.4−δMnO3 manganese perovskites. Mater. Sci. Eng. B 144, 117–122 (2007)

    Google Scholar 

  42. R. Regmi, R. Tackett, G. Lawes, Suppression of low-temperature magnetic states in Mn3O4 nanoparticles. J. Magn. Magn. Mater. 321, 2296–2299 (2009)

    ADS  Google Scholar 

  43. D.C. Krishna, P. Venugopal Reddy, Magnetic transport behavior of nano-crystalline Pr0.67A0.33MnO3 (A = Ca, Sr, Pb and Ba) manganites. J. Alloy. Compd. 479, 661–669 (2009)

    Google Scholar 

  44. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, Magnetic State of the Structural Separated Anion Deficient La0.70Sr0.30MnO2.85 Manganite. J. Exp. Theor. Phys. 113, 819–825 (2011)

    ADS  Google Scholar 

  45. R. Skini, A. Omri, M. Khlifi, E. Dhahri, E.K. Hlil, Large magnetocaloric effect in lanthanum-deficiency manganites La0.8-x·xCa0.2MnO3 (0.00 ≤ x ≤ 0.20) with a first-order magnetic phase transition. J. Magn. Magn. Mater. 364, 5–10 (2014)

    ADS  Google Scholar 

  46. Shaobo Xi, Lu Wenjian, Yuping Sun, Magnetic properties and magnetocaloric effect of La0.8Ca0.2MnO3 nanoparticles tuned by particle size. J. Appl. Phys. 111, 063922 (2012)

    ADS  Google Scholar 

  47. H. Baaziza, A. Tozri, E. Dhahri, E.K. Hlil, Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram. Int. 41, 2955–2962 (2015)

    Google Scholar 

  48. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, Study of a-site ordered PrBaMn2O6−δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter 17, 6495–6506 (2005)

    ADS  Google Scholar 

  49. S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, Phase separation and size effects in Pr070Ba030MnO3+δ perovskite manganites. J. Phys. Condens. Matter 19, 266214 (2007)

    ADS  Google Scholar 

  50. A. Aharoni (Ed.), Introduction to the theory of ferromagnetism, Clarendon Press, 1998, p. 58

  51. P.G. Radaelli, G. Iannone, Structural effects on the magnetic and transport properties of perovskite A1−xA′xMnO3 (x = 0.25, 0.30). Phys. Rev. B 56, 8265–8276 (1997)

    ADS  Google Scholar 

  52. N. Assoudi, I. Walha, E. Dhahri, S. Alleg, E.K. Hlil, Structural, magnetic and on magnetocaloric properties near the paramagnetic to ferromagnetic phase transition in La0.5 & #xF086;0.1 Ca0.4MnO3 oxide. Solid State Commun. 277, 13–18 (2018)

    ADS  Google Scholar 

  53. H. Terashita, J.J. Neumeier, Bulk magnetic properties of La1−xCaxMnO3: signatures of local ferromagnetic order. Physical Review B 71, 13 (2005)

    Google Scholar 

  54. B. Martinez, V. Laukhin, J. Fontcuberta, L. Pinsard, A. Revcolevschi, Magnetic field and pressure effects on the magnetic transitions of La09Ca01MnO3 perovskites. Physical Review B 66, 054436 (2002)

    ADS  Google Scholar 

  55. M.H. Ehsani, P. Kameli, M.E. Ghazi, F.S. Razavi, An investigation on magnetic interacting La0.6Sr0.4MnO3 nanoparticles. Advanced Materials Research 829, 712–716 (2013)

    Google Scholar 

  56. R. Skini, M. Khlifi, E. Dhahri, E.K. Hlil, Lanthanum deficiency effect on the structural, magnetic and transport properties of the La 0.8-xCa0.2MnO3 manganites oxides. J Supercond Nov Magn 27, 247–256 (2013)

    Google Scholar 

  57. S.K. Banerjee, On a generalized approach to first and second order magnetic transition. Phys. Lett 12, 16–17 (1964)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research and within the framework of Tunisian-Portuguese cooperation in the field of scientific research and technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henchiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henchiri, C., Hamdi, R., Mnasri, T. et al. Structural and magnetic properties of La1-xxMnO3 (x = 0.1; 0.2 and 0.3) manganites. Appl. Phys. A 125, 725 (2019). https://doi.org/10.1007/s00339-019-2980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2980-3

Navigation