Skip to main content
Log in

A novel fabrication of [Fe(HB(pz)3)2]@MIL-101 hybrid material via diffusion and the lower temperature shift on its spin transition behavior

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

[Fe(HB(pz)3)2], a well-studied spin-crossover (SCO) complex, has been entrapped in NH2-MIL-101(Al) metal–organic framework (MOF) via gas diffusion method. [Fe(HB(pz)3)2] would sublimate when temperature exceeds 100 °C, especially at low pressure. Thus, in the selected condition, [Fe(HB(pz)3)2] molecules can be sublimated to a gas phase and diffused into the pores of NH2-MIL-101(Al), which yield [Fe(HB(pz)3)2]@MIL-101 hybrid materials. The identity of composites, with a loading of iron complex at ~ 8 wt%, was characterized by X-ray diffraction and spectroscopic attestation. The hybrid materials demonstrate a gentle spin transition curve from 300 to 400 K, which is different from the SCO behavior of [Fe(HB(pz)3)2]. And for the pure [Fe(HB(pz)3)2] sample at 400 K, only 60% of Fe(II) is in HS, while in hybrid samples, HS state is complete. This interesting phenomenon might indicate that the spin transition in the hybrid sample can be triggered at lower temperature. The composite samples were thoroughly studied by X-ray diffraction, IR spectroscopy, atom absorption spectroscopy, nitrogen physisorption, and magnetic measurements. Thereby, a novel MOF-based material with isolated SCO units is proposed, which demonstrate a salient ‘matrix-effect’ on spin-crossover behavior of [Fe(HB(pz)3)2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. J. Hrudka, H. Phan, J. Lengyel, A. Rogachev, M. Shatruk, Inorg. Chem. 57(9), 5183–5193 (2018)

    Article  Google Scholar 

  2. A. Ondo, T. Ishida, Crystals 8, 155 (2018)

    Article  Google Scholar 

  3. E. Burzuri, A. Garci-Fuente, V. Garcia-Suarez, K. Kumar, M. Ruben, J. Ferrer, H. van der Zant, Nanoscale 10, 7905–7911 (2018)

    Article  Google Scholar 

  4. V. da Vieira, I. Gama, L. Santos, N. Pereira, J. Bandeira, Waerenborgh. CrystEngComm 20, 2465–2475 (2018)

    Article  Google Scholar 

  5. J.A. Wolny, H. Paulsen, A. Trautwein, V. Schünemann, Coord. Chem. Rev. 253, 2423–2431 (2009)

    Article  Google Scholar 

  6. M. Kepenekian, J. Costa, B. Guennic, P. Maldivi, S. Bonnet, J. Reedijk, P. Gamez, V. Robert, Inorg. Chem. 49, 11057–11061 (2010)

    Article  Google Scholar 

  7. M. Cavallini, I. Bergenti, S. Milita, G. Ruani, I. Salitros, Z. Qu, R. Chandrasekar, M. Ruben, Angew. Chem. Int. Ed. 47, 8596–8600 (2008)

    Article  Google Scholar 

  8. M. Cuéllar, A. Lapresta-Fernández, J. Herrera, A. Salinas-Castillo, M. del Carmen Pegalajar, S. Titos-Padilla, E. Colacio, L. Capitán-Vallvey, Sens. Actuators B 208,180–187 (2015)

  9. C.M. Jureschi, J. Linares, A. Rotaru, M. Ritti, M. Parlier, M. Dîrtu, Y. Wolff, Y. Garcia, Sensors 15, 2388–2398 (2015)

    Article  Google Scholar 

  10. C. Janiak, T. Scharmann, J. Green, R. Parkin, M. Kolm, E. Riedel, W. Mickler, J. Elguero, R. Claramunt, D. Sanz, Chem. Eur. J.2, 992–1000 (1996)

  11. S. Zamponi, G. Gambini, P. Conti, G. Lobbia, R. Marassi, M. Berrettoni, B. Cecchi, Polyhedron 14, 1929–1935 (1995)

    Article  Google Scholar 

  12. S. Calogero, G. Lobbia, P. Cecchi, G. Valle, J. Friedl, Polyhedron 13, 87–97 (1994)

    Article  Google Scholar 

  13. Y. Sohrin, H. Kokusen, M. Matsui, Inorg. Chem. 34, 3928–3934 (1995)

    Article  Google Scholar 

  14. F. Grandjean, G. Long, B. Hutchinson, L. Ohlhausen, P. Neill, J. Holcomb, Inorg. Chem. 28, 4406–4414 (1989)

    Article  Google Scholar 

  15. L. Salmon, G. Molnár, S. Cobo, P. Oulié, M. Etienne, T. Mahfoud, P. Demont, A. Eguchi, H. Watanabe, K. Tanaka, A. Bousseksou, New J. Chem. 33, 1283–1289 (2009)

    Article  Google Scholar 

  16. D. Qiu, L. Gu, X. Sun, D. Ren, Z. Gu, Z. Li, RSC Adv. 4, 61313–61319 (2014)

    Article  Google Scholar 

  17. P. Gütlich, A. Gaspar, Y. Garcia, Beilstein J. Org. Chem. 9, 342–391 (2013)

    Article  Google Scholar 

  18. A. Tissot, L. Rechignat, A. Bousseksoub, M. Boillot, J. Mater. Chem. 22, 3411–3419 (2012)

    Article  Google Scholar 

  19. D. Qiu, D. Ren, L. Gu, X. Sun, T. Qu, Z. Gu, Z. Li, RSC Adv. 4, 31323–31327 (2014)

    Article  Google Scholar 

  20. J. Dugay, M. Marqués, T. Kozlova, H. Zandbergen, E. Coronado, H. van der Zant, Adv. Mater. 27, 1288–1293 (2015)

    Article  Google Scholar 

  21. V. Martinez, I. Boldog, A. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, J. Real, Chem. Mater. 22, 4271–4281 (2010)

    Article  Google Scholar 

  22. L. Molnár, W. Salmon, F. Nicolazzi, A. Terkib, J. Bousseksou, Mater. Chem. C 2, 1360–1366 (2014)

    Article  Google Scholar 

  23. T. Zhao, I. Boldog, C. Janiak, Y. Chin, J. Inorg. Chem. 33, 1330–1338 (2017)

    Google Scholar 

  24. A. Abherve, T. Grancha, J. Ferrando-Soria, M. Clemente-Leon, E. Coronado, J. Waerenborgh, F. Lloret, E. Pardo, Chem. Commun. 52, 7360–7363 (2016)

    Article  Google Scholar 

  25. T. Zhao, I. Boldog, V. Spasojevic, A. Rotaru, Y. Garcia, C. Janiak, J. Mater. Chem. C 4, 6588–6601 (2016)

    Article  Google Scholar 

  26. S. Trofimenko, J. Am. Chem. Soc. 89, 3170–3177 (1967)

    Article  Google Scholar 

  27. T. Zhao, L. Yang, P. Feng, I. Gruber, C. Janiak, Y. Liu, Inorg. Chim. Acta 471, 440–445 (2018)

    Article  Google Scholar 

  28. T. Zhao, S. Li, L. Shen, Y. Wang, X. Yang, Inorg. Chem. Commun. 96, 47–51 (2018)

    Article  ADS  Google Scholar 

  29. S. Proch, J. Herrmannsdçrfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker, Chem. Eur. J. 14, 8204–8212 (2008)

    Article  Google Scholar 

  30. S. Hermes, M. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. Fischer, Angew. Chem. Int. Ed. 44, 6237–6241 (2005)

    Article  Google Scholar 

  31. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309, 2040–2042 (2005)

    Article  ADS  Google Scholar 

  32. K. Brandenburg, Diamond (Version 3.2), Crystal and Molecular Structure Visualization, Crystal Impact-K (Brandenburg & H. Putz Gbr, Bonn, 2009)

  33. T. Delgado, A. Tissot, C. Besnard, L. Guénée, P. Pattison, A. Hauser, Chem. Eur. J. 21, 3664–3670 (2015)

    Article  Google Scholar 

  34. H. Naggert, A. Bannwarth, S. von Chemnitz, T. Hofe, E. Quandt, F. Tuczek, Dalton Trans. 40, 6364–6366 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51802094), the Science and Technology Program of Hunan Province, China (2018RS3084), the Natural Science Foundation of Hunan Province (2018JJ3122) and the Science Research Project of Hunan Provincial Department of Education (18B294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Dong, M. & Zhao, Y. A novel fabrication of [Fe(HB(pz)3)2]@MIL-101 hybrid material via diffusion and the lower temperature shift on its spin transition behavior. Appl. Phys. A 125, 670 (2019). https://doi.org/10.1007/s00339-019-2970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2970-5

Navigation