Applied Physics A

, 125:667 | Cite as

Magnetoelectric experiments and modelling in bi-layer composites consisting of polyurethane loaded with magnetic particles/piezoelectric ceramic

  • Abderrahmane Tabakh
  • Rabah BelouadahEmail author
  • Benoit Guiffard
  • Daniel Guyomar


This study examines the effect of the loss-damping \(\eta\) coefficient and the stress magnetostrictive coefficient \(\delta\) on the magnetoelectric (ME) phenomenon in bi-layer composites consisting of a polyurethane layer loaded with magnetic \({\text{Fe}}_{3} {\text{O}}_{4}\) nanoparticles glued to piezoelectric ceramic. A model based on a driven damped oscillation system has been developed to evaluate the influence of the η and δ coefficients on ME current response \((i_{{{\text{ME}}}} )\) versus bias magnetic induction \((B_{{{\text{dc}}}} )\). A good agreement was obtained between the simulated and experimental results; additionally, the magnitude of ME current increased with an increase in \(B_{{{\text{dc}}}}\), and also increased with an increase in δ and a decrease in \(\eta\). However, the phase shift \(\phi\) between \(i_{{{\text{ME}}}}\) and alternative magnetic induction \(B_{{{\text{ac}}}}\) presents a phase-switching phenomenon—namely, the point at which the curve \(\phi (B_{{{\text{dc}}}} )\) switches by \(\pi\) displaced from the center \((B_{{{\text{dc}}}} = 0 T)\)—as well as the curve displaced toward lower when \(\eta\) increased or \(\delta\) decreased. Consequently, the ME current and the phase-switching phenomenon are mainly influenced by the magnetostrictive and the loss-damping coefficients.



  1. 1.
    K. Bi, Y.G. Wang, W. Wu, Sens. Actuators A. 166, 48 (2011)CrossRefGoogle Scholar
  2. 2.
    T.Z. Wang, Y.H. Zhou, Compos. Struct. 93, 1485 (2011)CrossRefGoogle Scholar
  3. 3.
    C.W. Nan, D.R. Clarke, Am. Ceram. Soc. 80, 1333 (1997)CrossRefGoogle Scholar
  4. 4.
    T.T. Nguyen, F. Bouillault, L. Daniel, X. Mininger, J. Appl. Phys. 109, 084904 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062 (2011)CrossRefGoogle Scholar
  6. 6.
    A.P. Pyatakov, A.K. Zvezdin, Phys. Uspekhi. 55, 557 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Ryu, S. Priya, K. Uchino, H.E. Kim, J. Electroceram. 8, 107 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Fiebig, N.A. Spaldin, Eur. Phys. J. B. 71, 293 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    N. Zhang, W. Ke, T. Schneiderand, G. Srinivasan, J. Phys.: Condens. Matter. 18, 11013 (2006)ADSGoogle Scholar
  10. 10.
    C.M. Kanamadi, S.R. Kulkarni, B.K. Chougule, J.H. Jeong, B.C. Choi, J. Mater. Sci. Mater. Electron. 20, 632 (2009)CrossRefGoogle Scholar
  11. 11.
    K.K. Patankar, S.S. Joshi, B.K. Chougule, Phys. Lett. A 346, 337 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    G. Srinivasan, R. Hayes, C.P. DeVreugd, V.M. Laletsin, N. Paddubnaya, Appl. Phys. A 80(4), 891 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang, S.W. Or, H.L. WaChan, X.Y. Zhao, H. Luo, Appl. Phys. 103, 124511 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Priya, R. Islam, S. Dong, D. Viehland, J. Electroceram. 19(1), 149 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhou, S.C. Yang, D.J. Apo, D. Maurya, S. Priya, Appl. Phys. Lett. 101, 232905 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Rawat, K.L. Yadav, Smart Mater. Struct. 23, 085032 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Yao, Y. Hou, S. Dong, X. Huang, Q. Yu, X. Li, J. Alloys. Compd. 509, 6920 (2011)CrossRefGoogle Scholar
  19. 19.
    K. Bi, Z.L. He, Y.G. Wang, Thin Solid Films 520, 5575 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y.J. Chen, J.S. Gao, T. Fitchorov, Z.H. Cai, K.S. Ziemer, C. Vittoria, V.G. Harris, Appl. Phys. Lett. 94, 082504 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    J.G. Wan, X.W. Wang, Y.J. Wu, M. Zeng, Y. Wang, H. Jiang, W.Q. Zhou, G.H. Wang, J.M. Liu, Appl. Phys. Lett. 86, 122501 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    D.A. Pan, Y. Bai, A.A. Volinsky, W.Y. Chu, L.J. Qiao, Appl. Phys. Lett. 92, 052904 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    B. Guiffard, D. Guyomar, R. Belouadah, J. Zhang, Mater. Lett. 63, 2584 (2009)CrossRefGoogle Scholar
  24. 24.
    J.P. Zhou, L. Meng, Z.H. Xia, P. Liu, G. Liu, Appl. Phys. Lett. 92, 062903 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S. Peng, P. Yang, W. Cai, X. Lu, J. Liu, F. Yan, M. Xu, H. Zhang, J. Wang, J. Zhu, J. Appl. Phys. 105, 061622 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G. Liu, P. Ci, S. Dong, J. Appl. Phys. 115, 164104 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Shi, J. Ma, C.W. Nan, Electroceramic 21(1), 390 (2008)CrossRefGoogle Scholar
  28. 28.
    J.P. Zhou, Z.C. Qiu, P. Liu, W.C. Sun, H.W. Zhang, Appl. Phys. Lett. 103, 103522 (2008)Google Scholar
  29. 29.
    M. Feng, J.J. Wang, J.M. Hu, J. Wang, J. Ma, H.B. Li, Y. Shen, Y.H. Lin, L.Q. Chen, C.W. Nan, Appl. Phys. Lett. 106, 072901 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M. Kim, J. Kim, W. Cao, Appl. Phys. Lett. 87, 132901 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    J. Zhang, Y. Kang, Y. Gao, G.J. Wen, Materials 12(7), 1055 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    J. Zhang, Y. Gao, Int. J. Solids Struct. 69, 291 (2015)CrossRefGoogle Scholar
  33. 33.
    Y.Y. Guo, J.P. Zhou, P. Liu, Curr. Appl. Phys. 10, 1092 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Wang, H. Yu, M. Zeng, J.G. Wan, M.F. Zhang, J.M. Liu, C.W. Nan, Appl. Phys. A. 81, 1197 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    J. Han, J. Zhang, Y. Gao, J. Magn. Magn. Mater. 466, 200 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    J. Wen, J. Zhang, Y. Gao, Compos. Struct. 166, 163 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, Y. Kang, Y. Yu, Y. Gao, Phys. Lett. A 381(1), 1 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    S. Reis, M.P. Silva, N. Castro, V. Correia, P. Martins, A. Lasheras, J. Gutierrez, J.M. Barandiarán, J.G. Rocha, S.L. Mendez, Mater. Des. 92, 906 (2016)CrossRefGoogle Scholar
  39. 39.
    G.V. Duong, R. Groessinger, M. Schoenhart, D.B. Basques, J. Magn. Magn. Mater. 316, 390 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    J. Lu, D. Pan, B. Yang, L. Qiao, Meas. Sci. Technol. 19, 045702 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    D. Guyomar, B. Guiffard, R. Belouadah, L. Petit, J. Appl. Phys. 104, 074902 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    D. Guyomar, D.F. Matei, B. Guiffard, Q. Le, R. Belouadah, Mater. Lett. 63, 611 (2009)CrossRefGoogle Scholar
  43. 43.
    R. Belouadah, D. Guyomar, B. Guiffard, J.W. Zhang, Phys. B 406, 2821 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    B. Guiffard, D. Guyomar, L. Garbuio, R. Belouadah, J. Zhang, P.J. Cottinet, Appl. Phys. Lett. 96, 044105 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    M.I. Bichurin, V.M. Petrov, Low Temp. Phys. 36, 544 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    M.D. Nguyen, E.P. Houwman, G. Rijnders, Scientific Reports 7, 12915 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Abderrahmane Tabakh
    • 1
  • Rabah Belouadah
    • 1
    • 2
    Email author
  • Benoit Guiffard
    • 3
  • Daniel Guyomar
    • 4
  1. 1.Laboratoire de Physique des Matériaux et ses Applications, Département de PhysiqueUniversité de M’silaM’silaAlgerie
  2. 2.Ecole Normale Supérieure de BousaadaBou saadaAlgerie
  3. 3.IETR UMR CNRS 6164Université de NantesNantes cedex 3France
  4. 4.Univ. Lyon, INSA-LYON, LGEF, E682, 69621VilleurbanneFrance

Personalised recommendations