Skip to main content
Log in

Uniform and electroforming-free resistive memory devices based on solution-processed triple-layered NiO/Al2O3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a resistive switching memory device with Ag/(NiO/Al2O3)3/fluorine-doped SnO2 structure was fabricated with solution-based process including spin-coating of triple-layered NiO/Al2O3 films and ink-jet printing of Ag electrodes. Bipolar resistive switching characteristic was observed in such a structure, with the resistance ratio between high and low resistance states over two orders and good cycling stability in voltage sweeping measurements. More importantly, the SET/RESET voltages, which were in the range of 0.8‒2.4 V and − 0.7 to − 2.8 V, respectively, showed significant improvement in voltage distribution (78.4% and 71.2% narrower) as compared to devices solely based on Al2O3 film. It is believed that the narrow distribution of SET and RESET voltages results from the reduced randomness of the formation and rupture of conductive filaments under applied voltages, since NiO and Al2O3 have different dielectric constants and the distribution of electric field in the multilayers can be varied to facilitate the formation and rupture of conductive filaments. Moreover, electroforming process was not required to activate the device based on triple-layered NiO/Al2O3 films. The characterization results especially the narrow SET/RESET voltage distribution and forming-free property make devices based on multilayered NiO/Al2O3 thin films promising for thin film-based nonvolatile memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  2. T.C. Chang, K.C. Chang, T.M. Tsai, T.J. Chu, S.M. Sze, Resistance random access memory. Mater. Today 19, 254–264 (2016)

    Article  Google Scholar 

  3. A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron. 125, 25–38 (2016)

    Article  ADS  Google Scholar 

  4. D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 063002 (2016)

    Article  ADS  Google Scholar 

  5. Y. Liu, T.P. Chen, Z. Liu, Y.F. Yu, Q. Yu, P. Li, S. Fung, Self-learning ability realized with a resistive switching device based on a Ni-rich nickel oxide thin film. Appl. Phys. A 105, 855–860 (2011)

    Article  ADS  Google Scholar 

  6. Z. Liu, T.P. Chen, Y. Liu, S. Zhang, Magnetron Sputtered Ni-rich Nickel Oxide Nano-Films for resistive switching memory applications. Int. J. Appl. Ceram. Technol. 10, 20–25 (2013)

    Article  Google Scholar 

  7. E.J. Yoo, M. Lyu, J.H. Yun, C.J. Kang, Y.J. Choi, L.Z. Wang, Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3- xClx perovskite for resistive random access memory devices. Adv. Mater. 27, 6170–6175 (2015)

    Article  Google Scholar 

  8. Y. Ji, B. Cho, S. Song, T.W. Kim, M. Choe, Y.H. Kahng, T. Lee, stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 22, 3071–3075 (2010)

    Article  Google Scholar 

  9. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.W. Li, Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009)

    Article  ADS  Google Scholar 

  10. W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015)

    Article  ADS  Google Scholar 

  11. U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)

    Article  ADS  Google Scholar 

  12. Z.H. Chen, Z. Liu, W.K. Ma, Y.K. Shen, H.Y. Zhang, T.P. Chen, International Nanoelectronics Conference 1–2 (2016)

  13. P. Zhou, H. Shen, J. Li, L.Y. Chen, C. Gao, Y. Lin, T.A. Tang, Resistance switching study of stoichiometric ZrO2 films for non-volatile memory application. Thin Solid Films 518, 5652–5655 (2010)

    Article  ADS  Google Scholar 

  14. S.A. Hadi, K.M. Humood, M.A. Jaoude, H. Abunahla, H.F.A. Shehhi, B. Mohammad, Bipolar Cu/HfO2/p2+ Si memristors by sol-gel spin-coating method and their application to environmental sensing. Sci. Rep. 9, 9983 (2019)

    Article  Google Scholar 

  15. D. Conti, M. Laurenti, S. Porro, C. Giovinazzo, S. Bianco, V. Fra, A. Chiolerio, C.F. Pirri, G. Milano, C. Ricciardi, Resistive switching in sub-micrometric ZnO polycrystalline films. Nanotechnology 30, 065707 (2019)

    Article  ADS  Google Scholar 

  16. T. You, Y. Shuai, W. Luo, N. Du, D. Burger, I. Skorupa, R. Hubner, S. Henker, C. Mayr, R. Schuffny, T. Mikolajick, O.G. Schmidt, H. Schmidt, Exploiting memristive BiFeO3 bilayer structures for compact sequential logics. Adv. Funct. Mater. 24, 3357–3365 (2014)

    Article  Google Scholar 

  17. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  ADS  Google Scholar 

  18. K.C. Chang, T.C. Chang, T.M. Tsai, R. Zhang, Y.C. Hung, Y.E. Syu, Y.F. Chang, M.C. Chen, T.J. Chu, H.L. Chen, C.H. Pan, C.C. Shih, J.C. Zheng, S.M. Sze, Physical and chemical mechanisms in oxide-based resistance random access memory. Nanoscale Res. Lett. 10, 1–27 (2015)

    Article  ADS  Google Scholar 

  19. electrochemical systems at the atomic scale, Valov, Redox-based resistive switching memories (ReRAMs). Chemelectrochem 1, 26–36 (2014)

    Article  Google Scholar 

  20. Z. Liu, T.P. Chen, Y. Liu, M. Yang, J.I. Wong, Z.H. Cen, Static dielectric constant of Al nanocrystal/Al2O3 nanocomposite thin films determined by the capacitance-voltage reconstruction technique. Appl. Phys. Lett. 96, 173110 (2010)

    Article  ADS  Google Scholar 

  21. R.L. Nigro, G. Fisichella, S. Battiato, G. Greco, P. Fiorenza, F. Roccaforte, G. Malandrino, An insight into the epitaxial nanostructures of NiO and CeO2 thin film dielectrics for AlGaN/GaN heterostructures. Mater. Chem. Phys. 162, 461–468 (2015)

    Article  Google Scholar 

  22. G.D. Wilk, R.M. Wallace, J.M. Anthony, High-K gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)

    Article  ADS  Google Scholar 

  23. S.B. Chen, C.H. Lai, A. Chin, J.C. Hsieh, J. Liu, High-density MIM capacitors using Al2O3 and AlTiOx dielectrics. IEEE Electron Device Lett. 23, 185–187 (2002)

    Article  ADS  Google Scholar 

  24. R. Ravindran, K. Gangopadhyay, S. Gangopadhyay, N. Mehta, N. Biswas, Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles. Appl. Phys. Lett. 89, 263511 (2006)

    Article  ADS  Google Scholar 

  25. K.M. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011)

    Article  ADS  Google Scholar 

  26. C.Y. Huang, C.Y. Huang, T.L. Tsai, C.A. Lin, T.Y. Tseng, Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance. Appl. Phys. Lett. 104, 062901 (2014)

    Article  ADS  Google Scholar 

  27. Q.Q. Sun, J.J. Gu, L. Chen, P. Zhou, P.F. Wang, S.J. Ding, D.W. Zhang, Controllable filament with electric field engineering for resistive switching uniformity. IEEE Electron Device Lett. 32, 1167–1169 (2011)

    Article  ADS  Google Scholar 

  28. K. Kim, E. Kim, Y. Kim, J.H. Sok, K. Park, Characteristics of resistive switching in ZnO/SiOx multi-layers for transparent nonvolatile memory devices. J. Korean Phys. Soc. 69, 1798–1804 (2016)

    Article  ADS  Google Scholar 

  29. Z. Fang, H.Y. Yu, X. Li, N. Singh, G.Q. Lo, D.L. Kwong, HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity. IEEE Electron Device Lett. 32, 566–568 (2011)

    Article  ADS  Google Scholar 

  30. Y.-T. Wu, S. Jou, P.-J. Yang, Resistance switching of thin AlOx and Cu-doped-AlOx films. Thin Solid Films 544, 24–27 (2013)

    Article  ADS  Google Scholar 

  31. P.S. Chen, Y.S. Chen, H.Y. Lee, W. Liu, P.Y. Gu, F. Chen, M.J. Tsai, Improved endurance in ultrathin Al2O3 film with a reactive Ti layer based resistive memory. Solid State Electron 77, 41–45 (2012)

    Article  ADS  Google Scholar 

  32. M.S. Kim, Y.H. Hwang, S. Kim, Z. Guo, D.I. Moon, J.M. Choi, M.L. Seol, S.S. Bae, Y.K. Choi, Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory. Appl. Phys. Lett. 101, 243503 (2012)

    Article  ADS  Google Scholar 

  33. S. Kim, Y.K. Choi, Resistive switching of aluminum oxide for flexible memory. Appl. Phys. Lett. 92, 223508 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (NSFC) under project No. 61404031, the Science and Technology Program of Guangdong Province of China under Project No. 2016A050502058, and the Department of Education of Guangdong Province under Project No. 2014KTSCX054.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhao or Zhen Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.L., Wen, C., Liu, Y. et al. Uniform and electroforming-free resistive memory devices based on solution-processed triple-layered NiO/Al2O3 thin films. Appl. Phys. A 125, 666 (2019). https://doi.org/10.1007/s00339-019-2960-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2960-7

Navigation