Skip to main content
Log in

Manipulation of main lobe number and azimuth angle of terahertz-transmitted beams by matrix-form-coding metasurface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To flexibly control the main lobes number and azimuth angle of terahertz-transmitted beams, we here propose a kind of matrix-form-coding metasurface. Coding metasurfaces are artificial structures composed of periodic or nonperiodic subwavelength unit cells, which are a kind of equivalent material that is made by replacing elementary particles such as molecules and atoms of natural materials with ordered artificial "particles". By critically design of coding modes, the azimuth and elevation of the transmitted terahertz beam can be flexibly manipulated. Particularly, the 1-bit coding is realized in x-direction coding, y-direction coding, and the chessboard coding. The combination of 2-bit and 1-bit coding forms a chessboard coding in the form of matrix, so as to flexibly control the azimuth and elevation of the transmitted beam and control the number of main lobes. Our coding method can flexibly control the azimuth of the beam and effectively reduce the energy of the side lobes. This work opens up a new digital perspective for new methods of metamaterials, making it possible to combine electromagnetic wave manipulation with digital signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Horiuchi, Terahertz technology: endless applications. Nat. Photonics 4(3), 140–140 (2010)

    Article  ADS  Google Scholar 

  2. D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, M. Cech, Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials. High Power Laser Sci. Eng. 6(1), e2 (2018)

    Article  Google Scholar 

  3. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004)

    Article  ADS  Google Scholar 

  4. O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, Z. Henis, Femtosecond laser-induced damage threshold in snow micro-structured targets. High Power Laser Sci. Eng. 6(1), e7 (2018)

    Article  Google Scholar 

  5. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J.G. de Abajo, V. Pruneri, H. Altug, Mid-infrared plasmonic biosensing with graphene. Science 349(6244), 165–168 (2015)

    Article  ADS  Google Scholar 

  6. T.T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T.Y. Huang, T.J. Yen, Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials. Opt. Express 20(7), 7580–7589 (2012)

    Article  ADS  Google Scholar 

  7. Y.S. Lin, Y. Qian, F.S. Ma, Z. Liu, P. Kropelnicki, C.K. Lee, Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 102(11), 111908 (2013)

    Article  ADS  Google Scholar 

  8. Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z.Y. Fan, M. Saed, A.A. Bernussi, Tunable dual-band terahertz metamaterial bandpass filters. Opt. Lett. 38(14), 2382–2384 (2013)

    Article  ADS  Google Scholar 

  9. S. Savo, D. Shrekenhamer, W.J. Padilla, Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2(3), 275–279 (2014)

    Article  Google Scholar 

  10. S. Liu, H. Chen, T.J. Cui, A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett. 106(15), 151601 (2015)

    Article  ADS  Google Scholar 

  11. L. Cong, N. Xu, J. Han, W. Zhang, R. Singh, A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control. Adv. Mater. 27(42), 6630–6636 (2015)

    Article  Google Scholar 

  12. R.H. Fan, Y. Zhou, X.P. Ren, R.W. Peng, S.C. Jiang, D.H. Xu, X. Xiong, X.R. Huang, M. Wang, Freely tunable broadband polarization rotator for terahertz waves. Adv. Mater. 27(7), 1201–1206 (2015)

    Article  Google Scholar 

  13. M. Unlu, M.R. Hasemi, C.W. Berry, S. Li, S.H. Yang, M. Jarrahi, Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 4, 5708 (2014)

    Article  Google Scholar 

  14. N. Karl, K. Reichel, H.T. Chen, A.J. Taylor, I. Brener, A. Benz, J.L. Reno, R. Mendis, D.M. Mittleman, An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Appl. Phys. Lett. 104(9), 091115 (2014)

    Article  ADS  Google Scholar 

  15. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K.F. Li, P.W.H. Wong, K.W. Cheah, E.Y.B. Pun, S. Zhang, X. Chen, Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015)

    Article  ADS  Google Scholar 

  16. W.T. Chen, K.Y. Yang, C.M. Wang, Y.W. Huang, G. Sun, I.D. Chiang, C.Y. Liao, W.L. Hsu, H.T. Lin, S. Sun, L. Zhou, A.Q. Liu, D.P. Tsai, High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14(1), 225–230 (2014)

    Article  ADS  Google Scholar 

  17. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10(4), 308–312 (2015)

    Article  ADS  Google Scholar 

  18. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  19. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas. Science 335(6067), 427–427 (2016)

    Article  ADS  Google Scholar 

  20. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11(5), 426–431 (2012)

    Article  ADS  Google Scholar 

  21. S. David, V. Jambunathan, A. Lucianetti, T. Mocek, Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers. High Power Laser Sci. Eng. 6(4), e62 (2018)

    Article  Google Scholar 

  22. J. Wang, Metasurfaces enabling structured light manipulation: advances and perspectives. Chin. Opt. Lett. 16(5), 050006 (2018)

    Article  Google Scholar 

  23. Q. Zhan, Q. Gan, Editorial for special issue on advances in metasurface. Chin. Opt. Lett. 16(5), 050001 (2018)

    Article  Google Scholar 

  24. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 115(15), 154504 (2014)

    Article  ADS  Google Scholar 

  25. Y.R. Padooru, A.B. Yakovlev, P.Y. Chen, A. Alù, Analytical modelling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays. J. Appl. Phys. 112(3), 034907 (2012)

    Article  ADS  Google Scholar 

  26. C. Pfeiffer, N.K. Emani, A.M. Shaltout, A. Boltasseva, V.M. Shalaev, A. Grbic, Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett. 14(5), 2491–2497 (2014)

    Article  ADS  Google Scholar 

  27. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3(10), e218 (2014)

    Article  ADS  Google Scholar 

  28. L.H. Gao, Q. Cheng, J. Yang, S.J. Ma, J. Zhao, S. Liu, H.B. Chen, Q. He, W.X. Jiang, H.F. Ma, Q.Y. Wen, L.J. Liang, B.B. Jin, W.W. Liu, L. Zhou, J.Q. Yao, P.H. Wu, T.J. Cui, Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl. 4(9), e324 (2015)

    Article  Google Scholar 

  29. L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J.G. Han, X. Ding, G.Y. Zhang, J.Q. Yao, Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies. Sci. Rep. 6, 39252 (2016)

    Article  ADS  Google Scholar 

  30. S. Liu, A. Noor, L.L. Du, L. Zhang, Q. Xu, K. Luan, T.Q. Wang, Z. Tian, W.X. Tang, J.G. Han, W.L. Zhang, X.Y. Zhou, Q. Cheng, T.J. Cui, Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics 3(10), 1968–1977 (2016)

    Article  Google Scholar 

  31. S. Liu, T.J. Cui, Q. Xu, D. Bao, L.L. Du, X. Wang, W.X. Tang, C.O. Yang, X.Y. Zhou, H. Yuan, H.F. Ma, W.X. Jing, J.G. Han, W.L. Zhang, Q. Cheng, Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5(5), e16076 (2016)

    Article  Google Scholar 

  32. S. Liu, L. Zhang, Q.L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Lqbal, X. Wan, Z. Tian, W.X. Tang, Q. Cheng, J.G. Han, W.L. Zhang, T.J. Cui, Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv. Opt. Mater. 4(12), 1965–1973 (2016)

    Article  Google Scholar 

  33. S. Liu, T.J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J.Q. Gu, W.X. Tang, M.Q. Qi, J.G. Han, W.L. Zhang, X.Y. Zhou, Q. Cheng, Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3(10), 1600156 (2016)

    Article  Google Scholar 

  34. K. Rouhi, H. Rajabalipanah, A. Abdolali, Real-time and broadband terahertz wave scattering manipulation via polarization-insensitive conformal graphene-based coding metasurfaces. Ann. Phys. Berlin 530(4), 1700310 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. K. Falk, Experimental methods for warm dense matter research. High Power Laser Sci. Eng. 6(4), e59 (2018)

    Article  Google Scholar 

  36. W. Chen, B. Liu, Y. Song, L. Chai, Q. Cui, Q. Liu, C. Wang, M. Hu, High pulse energy fiber/solid-slab hybrid picosecond pulse system for material processing on polycrystalline diamonds. High Power Laser Sci. Eng. 6(2), e18 (2018)

    Article  Google Scholar 

  37. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, G. Shi, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt. Laser Technol. 95(1), 56–62 (2017)

    Article  ADS  Google Scholar 

  38. X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, L. Wang, Analysis of the sinusoidal nanopatterning grating structure. Opt. Laser Technol. 48(6), 160–166 (2013)

    Article  ADS  Google Scholar 

  39. W. Wang, X. Jing, J. Zhao, Y. Li, Y. Tian, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl. 47(2), 183–198 (2017)

    Article  Google Scholar 

Download references

Funding

National Key R&D Program of China (2018YFF01013005), Natural Science Foundation of Zhejiang Province (LY17F050009); National Natural Science Foundation of China (NSFC) (no. 61875159, No.61405182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, B., Bie, X., Yan, Z. et al. Manipulation of main lobe number and azimuth angle of terahertz-transmitted beams by matrix-form-coding metasurface. Appl. Phys. A 125, 651 (2019). https://doi.org/10.1007/s00339-019-2946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2946-5

Navigation