Skip to main content
Log in

The effective contribution of PbO on nuclear shielding properties of xPbO-(100 − x)P2O5 glass system: a broad range investigation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The radiation shielding properties for glass system with the composition of xPbO-(100 − x)P2O5 (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 mol%) were studied. For that purpose, 3 × 3 inch NaI(Tl) scintillation detector was designed to detect the photons using simulation code of MCNPX program. Consequently, the mass attenuation coefficients (μ/ρ) were calculated. The predestined (μ/ρ) values using MCNPX code for twelve glass samples were checked together with the XMuDat and XCOM software outcomes. The half value layer (HVL), proton mass stopping power (MSP), exposure buildup factor (EBF) and proton projected range were estimated in a broad energy zone of 0.015–15 MeV. In addition, the neutron radiation shielding parameters i.e. mass removal cross section for neutron (∑R), Coherent neutron scattering length (bco), incoherent neutron scattering length (binc), coherent neutron scattering cross section (σco), incoherent neutron scattering cross section (σinc), total neutron scattering cross section (σtot) and absorption neutron scattering cross section (σabs) of glasses were computed. The addition of PbO has an impact on the radiation protection properties of phosphate glass systems improve the radiation shielding properties of phosphate glass samples, where (μ/ρ), ∑R and effective atomic number (Zeff) values increase when the chemical composition of lead oxide increase while HVL, EBF MSP and projected range values decrease. That underlines our research in that way that it appears that the addition of lead oxide has an impact on the radiation protection properties of phosphate glass systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N. Ekinci, E. Kavaz, Y. Özdemir, A study of the energy absorption and exposure buildup factors of some anti-inflammatory drugs. Appl. Radiat. Isot. 90, 265–273 (2014). https://doi.org/10.1016/j.apradiso.2014.05.003

    Article  Google Scholar 

  2. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

    Article  ADS  Google Scholar 

  3. B. Pomaro, A review on radiation damage in concrete for nuclear facilities: from experiments to modeling. Model. Simul. Eng. 2016, 1–10 (2016). https://doi.org/10.1155/2016/4165746

    Article  Google Scholar 

  4. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.049

    Article  ADS  Google Scholar 

  5. A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synth. Methods 215, 200–206 (2016). https://doi.org/10.1016/j.synthmet.2016.03.002

    Article  Google Scholar 

  6. B.O. Elbashir, M.G. Dong, M.I. Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018). https://doi.org/10.1016/j.rinp.2018.01.075

    Article  ADS  Google Scholar 

  7. S. Issa, M. Sayyed, M. Kurudirek, Investigation of Gamma Radiation Shielding Properties of Some Zinc Tellurite Glasses. J. Phys. Sci. 27, 97–119 (2016). https://doi.org/10.21315/jps2016.27.3.7

    Article  Google Scholar 

  8. S.A.M. Issa, A.A.A. Darwish, M.M. El-Nahass, The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy 100, 276–282 (2017). https://doi.org/10.1016/j.pnucene.2017.06.016

    Article  Google Scholar 

  9. S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation. J. Alloys Compd. 698, 234–240 (2017)

    Article  Google Scholar 

  10. S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K. Saber Shaaban, Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses. Curr. Appl. Phys. 18, 717–727 (2018)

    Article  ADS  Google Scholar 

  11. S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results Phys. 9, 206–210 (2018). https://doi.org/10.1016/j.rinp.2018.02.039

    Article  ADS  Google Scholar 

  12. S. Kaewjaeng, J. Kaewkhao, P. Limsuwan, U. Maghanemi, Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system. Procedia Eng. 32, 1080–1086 (2012). https://doi.org/10.1016/j.proeng.2012.02.058

    Article  Google Scholar 

  13. R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Phys. Chem. Radiat. 1, 1 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.001

    Article  Google Scholar 

  14. M.I. Sayyed, S.A.M. Issa, S.H. Auda, Assessment of radio-protective properties of some anti-inflammatory drugs. Prog. Nucl. Energy 100, 297–308 (2017). https://doi.org/10.1016/j.pnucene.2017.07.003

    Article  Google Scholar 

  15. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96, 153–157 (2014). https://doi.org/10.1016/j.radphyschem.2013.09.015

    Article  ADS  Google Scholar 

  16. A.E. Ersundu, M. Büyükyıldız, M. Çelikbilek Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018). https://doi.org/10.1016/j.pnucene.2017.10.008

    Article  Google Scholar 

  17. S.A.M. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3–Na2O–B2O3−Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 223, 209–219 (2019). https://doi.org/10.1016/j.matchemphys.2018.10.064

    Article  Google Scholar 

  18. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 367–377 (2019). https://doi.org/10.1016/j.saa.2018.08.038

    Article  ADS  Google Scholar 

  19. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018). https://doi.org/10.1016/j.jallcom.2018.02.158

    Article  Google Scholar 

  20. H.O. Tekin, M.I. Sayyed, S.A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. 150, 95–100 (2018)

    Article  ADS  Google Scholar 

  21. E.-S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150, 120–124 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.029

    Article  ADS  Google Scholar 

  22. S. Yasmin, B.S. Barua, M.U. Khandaker, F.-U.-Z. Chowdhury, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018). https://doi.org/10.1016/j.rinp.2018.02.075

    Article  ADS  Google Scholar 

  23. K.A. Matori, M.H.M. Zaid, S.H.A. Aziz, H.M. Kamari, Z.A. Wahab, Study of the elastic properties of ***(PbO)x(P2O5)1 x lead phosphate glass using an ultrasonic technique. J. Non. Cryst. Solids 361, 78–81 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.10.022

    Article  ADS  Google Scholar 

  24. R. Praveena, V. Venkatramu, P. Babu, C.K. Jayasankar, Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO–Nb2O5 glasses. Phys. B Condens. Matter 403, 3527–3534 (2008). https://doi.org/10.1016/j.physb.2008.05.027

    Article  ADS  Google Scholar 

  25. M.I. Ojovan, W.E. Lee, Glassy wasteforms for nuclear waste immobilization. Metall. Mater. Trans. A 42, 837–851 (2011). https://doi.org/10.1007/s11661-010-0525-7

    Article  Google Scholar 

  26. M.I. Ojovan, W.E. Lee, Connectivity and glass transition in disordered oxide systems. J. Non Cryst. Solids 356, 2534–2540 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.012

    Article  ADS  Google Scholar 

  27. H.A.A. Sidek, R. El-Mallawany, K.A. Matori, M.K. Halimah, Effect of PbO on the elastic behavior of ZnO–P2O5 glass systems. Results Phys. 6, 449–455 (2016). https://doi.org/10.1016/j.rinp.2016.07.014

    Article  ADS  Google Scholar 

  28. L.M. Sharaf El-Deen, M.S. Al Salhi, M.M. Elkholy, Spectral properties of PbO–P2O5 glasses. J. Non Cryst. Solids 354, 3762–3766 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.03.032

    Article  ADS  Google Scholar 

  29. P. Shih, Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses. Mater. Chem. Phys. 84, 151–156 (2004). https://doi.org/10.1016/j.matchemphys.2003.11.016

    Article  Google Scholar 

  30. S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2–ZnO–NiO glasses. Mater. Chem. Phys. 212, 12–20 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.058

    Article  Google Scholar 

  31. L. Gerward, N. Guilbert, K. Bjorn Jensen, H. Levring, X-ray absorption in matter. Re***engineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001). https://doi.org/10.1016/S0969-806X(00)00324-8

    Article  ADS  Google Scholar 

  32. M.I. Sayyed, S.A.M. Issa, M. Büyükyıldız, M. Dong, Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code. Radiat. Phys. Chem. 150, 1–8 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.014

    Article  ADS  Google Scholar 

  33. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.06.034

    Article  Google Scholar 

  34. M.M. Hosamani, N.M. Badiger, Determination of effective atomic number of composite materials using backscattered gamma photons—a novel method. Chem. Phys. Lett. 695, 94–98 (2018). https://doi.org/10.1016/j.cplett.2018.02.012

    Article  ADS  Google Scholar 

  35. S.A.M. Issa, A.M.A. Mostafa, M. Dong, V.P. Singh, H.O. Tekin, Determining the gamma-ray parameters for BaO–ZnO–B2O3 glasses using MCNP5 code: a comparison study. Radiat. Eff. Defects Solids 173, 510–525 (2018). https://doi.org/10.1080/10420150.2018.1484743

    Article  ADS  Google Scholar 

  36. S.A.M. Issa, A.M.A. Mostafa, T.A. Hanafy, M. Dong, X. Xue, Comparison study of photon attenuation characteristics of Poly vinyl alcohol (PVA) doped with Pb(NO3)2 by MCNP5 code, XCOM and experimental results. Prog. Nucl. Energy 111, 15–23 (2019). https://doi.org/10.1016/j.pnucene.2018.10.018

    Article  Google Scholar 

  37. S.A.M. Issa, M.I. Sayyed, M. Kurudirek, Study of gamma radiation shielding properties of ZnO–TeO2 glasses. Bull. Mater. Sci. 40, 841–857 (2017)

    Article  Google Scholar 

  38. A.B. Chilton, J.K. Shultis, R.E. Faw, Principles of Radiation Shielding (Prentice Hall, Englewood Cliffs, 1984)

    Google Scholar 

  39. M.F. Kaplan, Concrete radiation shielding (Wiley, New York, 1989)

    Google Scholar 

  40. H.C. Manjunatha, L. Seenappa, B.M. Chandrika, K.N. Sridhar, C. Hanumantharayappa, Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Appl. Radiat. Isot. 139, 187–194 (2018). https://doi.org/10.1016/j.apradiso.2018.05.014

    Article  Google Scholar 

  41. S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3–MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system. Results Phys. 13, 102165 (2019). https://doi.org/10.1016/j.rinp.2019.102165

    Article  Google Scholar 

  42. S.A.M. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems. Compos. Part B Eng. 167, 231–240 (2019). https://doi.org/10.1016/j.compositesb.2018.12.029

    Article  Google Scholar 

  43. I.S. Mahmoud, S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, O. Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Int. Ceram. 1, 1 (2019). https://doi.org/10.1016/j.ceramint.2019.04.105

    Article  Google Scholar 

  44. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J. Non Cryst. Solids 512, 140–147 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.004

    Article  ADS  Google Scholar 

  45. K. Bagheri, S.M. Razavi, S.J. Ahmadi, M. Kosari, H. Abolghasemi, Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiat. Phys. Chem. 146, 5–10 (2018). https://doi.org/10.1016/j.radphyschem.2017.12.024

    Article  ADS  Google Scholar 

  46. E. Salama, A. Maher, G.M. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead. J. Phys. Chem. Solids 131, 139–147 (2019). https://doi.org/10.1016/j.jpcs.2019.04.002

    Article  ADS  Google Scholar 

  47. R. Singh, A. Singh, D. Singh, M. Tyagi, Studies of photon interaction and shielding parameters of lead alumino-borophosphate glass system. Radiat. Phys. Chem. 161, 60–65 (2019). https://doi.org/10.1016/j.radphyschem.2019.04.013

    Article  Google Scholar 

  48. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

  49. https://www.schott.com/advanced_optics/english/products/optical%20materials/special%20materials/radiation-shielding-glasses/index.html [WWW Document], n.d.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Tekin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, S.A.M., Tekin, H.O., Erguzel, T.T. et al. The effective contribution of PbO on nuclear shielding properties of xPbO-(100 − x)P2O5 glass system: a broad range investigation. Appl. Phys. A 125, 640 (2019). https://doi.org/10.1007/s00339-019-2941-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2941-x

Navigation