Skip to main content
Log in

Tailoring magnetic characteristics of (Fe1−xCox)81Zr9B10 amorphous alloys via engineering crystallization processes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on systematic structural and magnetic characteristics’ evolution studies of (Fe1−xCox)81Zr9B10 (x = 0, 1/6, 1/3, 1/2) amorphous alloys prepared by a single roller melt spinning with post-annealing treatments under a vacuum condition. With representative chemical composition, the crystallization processes of the above four typical amorphous alloys are complicated under the dedicated experimental investigations and interpretation. The α-Mn-type phase is detected in Fe81Zr9B10 alloy, while the β-Mn-type phase is observed for high Co concentration alloys. Both α-Mn-type phase and β-Mn-type phase are the transitional metastable phases formed during the dynamic crystallization. Importantly, the precipitations of metastable α-Mn- and β-Mn-type phases boost up corresponding coercivity (Hc). Along with the transformation of metastable phases, Hc decreases considerably. The precipitation of certain of β-Mn-type phase in the primary crystallization stage facilitates gaining low Hc in the second stage of crystallization. Our work paves a new path to tailor the magnetic characteristics in Fe(Co)-based nanocrystalline alloys by engineering the microstructure of metastable phase(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J. Non-Cryst. Solids 391, 61–82 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.03.010

    Article  ADS  Google Scholar 

  2. Adrian Radoń, Patryk Włodarczyk, Łukasz Hawełek, Mariola Kądziołka-Gaweł, Piotr Gębara, Ryszard Nowosielski, Rafał Babilas, Thermodynamic approach for determining chemical composition of Fe–Co based amorphous alloys with high thermal stability and glass forming ability. J. Alloy Compd. 763, 141–152 (2018). https://doi.org/10.1016/j.jallcom.2018.05.242

    Article  Google Scholar 

  3. I. Solomon, N. Solomon, Effect of cobalt on the corrosion behaviour of amorphous Fe–Co–Cr–B–Si alloys in dilute mineral acids. Can. Metall. Q 49, 319–324 (2010). https://doi.org/10.1179/cmq.2010.49.3.319

    Article  Google Scholar 

  4. T. Kaňčuch, M. Miglierini, A. Lancok, P. Švec, E. Illeková, Influence of cobalt substitution on hyperfine interactions in (Fe1-xCox)76Mo8Cu1B15 alloys. Acta Phys. Pol. 113, 63–66 (2008). https://doi.org/10.1088/1742-6596/112/3/032055

    Article  ADS  Google Scholar 

  5. L. Xue, W.M. Yang, H.S. Liu, H. Men, A.D. Wang, C.T. Chang, B.L. Shen, Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys. J. Magn. Magn. Mater. 419, 198–201 (2016). https://doi.org/10.1016/j.jmmm.2016.06.020

    Article  ADS  Google Scholar 

  6. J. Wang, Z. Wang, Y.Y. Jia, R.M. Shi, Z.P. Wen, High temperature soft magnetic properties of (FexCo1−x)73.5Cu1Mo3Si13.5B9 (x=0.5, 1) alloys. J Magn Magn Mater 328, 62–65 (2013). https://doi.org/10.1016/j.jmmm.2012.09.068

    Article  ADS  Google Scholar 

  7. B. Kunca, J. Marcin, P. Švec, J. Kováč, P. Švec Sr., I. Škorvánek, Influence of Co doping on induced anisotropy and domain structure in magnetic field annealed (Fe1−xCox)79Mo8Cu1B12. Acta Phys. Pol. A 131, 759–761 (2017). https://doi.org/10.12693/APhysPolA.131.759

    Article  Google Scholar 

  8. G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Mag. 25, 3327–3329 (1989). https://doi.org/10.1109/20.42292

    Article  ADS  Google Scholar 

  9. K. Suzuki, J.M. Cadogan, Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Phys. Rev. B 58, 2730–2739 (1998). https://doi.org/10.1103/PhysRevB.58.2730

    Article  ADS  Google Scholar 

  10. I.V. Lyasotsky, N.B. Dyakonova, D.L. Dyakonov, Metastable primary precipitation phases in multicomponent glass forming Fe-base alloys with metalloids. J. Alloy Compd. 586, S20–S23 (2014). https://doi.org/10.1016/j.jallcom.2013.03.112

    Article  Google Scholar 

  11. T. Nagase, Y. Umakoshi, Phase transformation in Fe81.0Zr9.0B10.0 metallic glass during thermal annealing and electron irradiation. ISIJ Int. 46, 1371–1380 (2006)

    Article  Google Scholar 

  12. Y.M. Sun, B. Li, Z. Hua, The crystallization process and magnetic property of Fe81Zr3Nb6B10 alloy. Mod. Phys. Lett. B 29, 1550196-1-1550206 (2015). https://doi.org/10.1142/S0217984915501961

    Article  ADS  Google Scholar 

  13. M. Imafuku, S. Sato, H. Koshiba, E. Matsubara, A. Inoue, Structural variation of Fe–Nb–B metallic glasses during crystallization process. Scr. Mater. 44, 2369–2372 (2001). https://doi.org/10.1016/S1359-6462(01)00776-X

    Article  Google Scholar 

  14. A. Hirata, Y. Hirotsu, K. Amiya, N. Nishiyama, A. Inoue, Fe23B6-type quasicrystal-like structures without icosahedral atomic arrangement in an Fe-based metallic glass. Phys. Rev. B 80, 140201-1-140204 (2009). https://doi.org/10.1103/PhysRevB.80.140201

    Article  ADS  Google Scholar 

  15. J. Jahng, H. Yang, E.S. Lee, Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy. Light Sci. Appl. 7, 73-1-9 (2018). https://doi.org/10.1038/s41377-018-0069-y

    Article  ADS  Google Scholar 

  16. G.Z. Xing, D.D. Wang, C.-J. Cheng, M. He, S. Li, T. Wu, Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl. Phys. Lett. 103, 022402-1-22405 (2013). https://doi.org/10.1063/1.4813217

    Article  ADS  Google Scholar 

  17. X.Y. Chen, Z. Tian, Recent progress in terahertz dynamic modulation based on graphene. Chin. Opt. 10, 86–97 (2017). https://doi.org/10.3788/CO.20171001.0086

    Article  Google Scholar 

  18. X. Zhang, L. Song, L. Cai, X.Z. Tian, Q. Zhang, X.Y. Qi, W.B. Zhou, N. Zhang, F. Yang, Q.X. Fan, Y.C. Wang, H.P. Liu, X.D. Bai, W.Y. Zhou, S.S. Xie, Optical visualization and polarized light absorption of the single-wall carbon nanotube to verify intrinsic thermal applications. Light Sci. Appl. 4, e318(1–8) (2015). https://doi.org/10.1038/lsa.2015.91

    Article  Google Scholar 

  19. J.F. Wu, H.T. Wang, Z.W. Su, M.H. Zhang, X.D. Hu, Y.J. Wang, Z. Wang, B. Zhong, W.W. Zhou, J.P. Liu, G.Z. Xing, Highly flexible and sensitive wearable E-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available. ACS Appl. Mater. Interfaces 9, 38745–38754 (2017). https://doi.org/10.1021/acsami.7b10316

    Article  Google Scholar 

  20. X. Bao, Y. Yuan, J.Q. Chen, B.H. Zhang, L. Song, C.B. Liu, R. Zbořil, S.N. Qu, In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 7, 91 (2018). https://doi.org/10.1038/s41377-018-0090-1

    Article  ADS  Google Scholar 

  21. T. Li, M.L. Zhang, F. Wang, D.M. Zhang, G.P. Wang, Fabrication of optical waveguide amplifiers based on bonding-type NaYF4: Er nanoparticles-polymer. Chin. Opt. 10, 219–225 (2017). https://doi.org/10.3788/CO.20171002.0219

    Article  Google Scholar 

  22. D. Qu, M. Zheng, J. Li, Z.G. Xie, Z.C. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Sci. Appl. 4, 364 (2015). https://doi.org/10.1038/lsa.2015.137

    Article  Google Scholar 

  23. D.D. Wang, Q. Chen, G.Z. Xing, J.B. Yi, S.R. Bakaul, J. Ding, J.L. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. Nano Lett. 12, 3994–4000 (2012). https://doi.org/10.1021/nl301226k

    Article  ADS  Google Scholar 

  24. Y.C. Li, H.B. Xin, H.X. Lei, L.L. Liu, Y.Z. Li, Y. Zhang, B.J. Li, Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. Appl. 5, e16176-1-9 (2016). https://doi.org/10.1038/lsa.2016.176

    Article  Google Scholar 

  25. D.D. Wang, G.Z. Xing, F. Yan, Y.S. Yan, S. Li, Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: experimental and computational insights. Appl. Phys. Lett. 104, 022412-1-5 (2014). https://doi.org/10.1063/1.4861936

    Article  ADS  Google Scholar 

  26. J.F. Wu, Z.Y. Ma, Z. Hao, J.T. Zhang, P.F. Sun, Sheath-core fiber strain sensors driven by in-situ crack and elastic effects in graphite nanoplate composites. ACS Appl. Nano Mater. 2, 750–759 (2019). https://doi.org/10.1021/acsanm.8b01926

    Article  Google Scholar 

  27. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005). https://doi.org/10.2320/matertrans.46.2817

    Article  Google Scholar 

  28. L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, Y.-Q. Lu, Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl. 4, e253-1-6 (2015). https://doi.org/10.1038/lsa.2015.26

    Article  Google Scholar 

  29. D.D. Wang, W.L. Wang, M.Y. Huang, A. Lek, J. Lam, Z.H. Mai, Failure mechanism analysis and process improvement on time-dependent dielectric breakdown of Cu/ultra-low-k dielectric based on complementary Raman and FTIR spectroscopy study. AIP Adv. 4, 077124-1-9 (2014). https://doi.org/10.1063/1.4890960

    Article  ADS  Google Scholar 

  30. L. Li, W. Guo, Y.Z. Yan, S. Lee, T. Wang, Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2, e104-1-8 (2013). https://doi.org/10.1038/lsa.2013.60

    Article  ADS  Google Scholar 

  31. X.B. Cheng, J.L. Zhang, T. Ding, Z.Y. Wei, H.Q. Li, Z.S. Wang, The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses. Light Sci. Appl. 2, e80-1-8 (2013). https://doi.org/10.1038/lsa.2013.36

    Article  ADS  Google Scholar 

  32. G.Z. Xing, J. Yi, L.M. Wong, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008). https://doi.org/10.1002/adma.200703149

    Article  Google Scholar 

  33. P. Wang, Y.P. Wang, L.M. Tong, Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci. Appl. 2, e102-1-10 (2013). https://doi.org/10.1038/lsa.2013.58

    Article  ADS  Google Scholar 

  34. G.Z. Xing, J. Yi, D.D. Wang, L. Liao, Z.X. Shen, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3−δ nanostructures. Phys. Rev. B 76, 174406-1-9 (2009). https://doi.org/10.1103/PhysRevB.79.174406

    Article  ADS  Google Scholar 

  35. E. Matioli, S. Brinkley, K.M. Kelchner, Y.-L. Hu, S. Nakamura, S. DenBaars, J. Speck, C. Weisbuch, High-brightness polarized light-emitting diodes. Light. Sci. Appl. 1, e22-1-7 (2012). https://doi.org/10.1038/lsa.2012.22

    Article  Google Scholar 

  36. W.Q. Yu, Q.L. Zhou, Z.S. Liu, H.Q. Zeng, Z.Q. Wang, Z. Hua, Effect of Cu and Mo additions on the crystallization behavior and magnetic properties of Fe80Zr10B10 alloy. J. Mater. Eng. Perform. 26, 4807–4812 (2017). https://doi.org/10.1007/s11665-017-2950-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (no. 51301075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Lu or Dandan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Lu, L., Zuo, B. et al. Tailoring magnetic characteristics of (Fe1−xCox)81Zr9B10 amorphous alloys via engineering crystallization processes. Appl. Phys. A 125, 636 (2019). https://doi.org/10.1007/s00339-019-2935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2935-8

Navigation