Skip to main content
Log in

Low-temperature dielectric anomaly in Bi0.5K0.5TiO3

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we report our studies on Bi0.5K0.5TiO3 (BKT) prepared by conventional solid-state reaction method and two-step sintering method to further understand the dielectric dispersion around room temperature. The coexistence of the tetragonal and cubic phases is confirmed. Most importantly, we find an extra dielectric loss anomaly around –100 °C. The polarization response suggests the contribution of the hysteresis-free polarization. Correspondingly, a Raman-active mode around 75 cm−1 is frozen on cooling. A model is proposed to interpret the origin of the low-temperature dielectric anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  ADS  Google Scholar 

  2. G. Burns, F.H. Dacol, Solid State Commun. 48, 853 (1983)

    Article  ADS  Google Scholar 

  3. F. Chu, N. Setter, A.K. Tagantsev, J. Appl. Phys. 74, 5129 (1993)

    Article  ADS  Google Scholar 

  4. M. Algueró, B. Jiménez, L. Pardo, Appl. Phys. Lett. 87, 082910 (2005)

    Article  ADS  Google Scholar 

  5. B.N. Rao, D.K. Khatua, R. Garg, A. Senyshyn, R. Ranjan, Phys. Rev. B. 91, 214116 (2015)

    Article  ADS  Google Scholar 

  6. K.V. Lalitha, J. Koruza, J. Rodel, Appl. Phys. Lett. 113, 252902 (2018)

    Article  ADS  Google Scholar 

  7. M. Hagiwara, S. Fujihara, Appl. Phys. Lett. 107, 012903 (2015)

    Article  ADS  Google Scholar 

  8. M. Hagiwara, Y. Ehara, N. Novak, N.H. Khansur, A. Ayrikyan, K.G. Webber, S. Fujihara, Phys. Rev. B. 96, 014103 (2017)

    Article  ADS  Google Scholar 

  9. J. König, D. Suvorov, J. Eur. Ceram. Soc. 35, 2791 (2015)

    Article  Google Scholar 

  10. J.J. Guo, M.K. Zhu, L. Li, M.P. Zheng, Y.D. Hou, J. Alloy Compd. 703, 448 (2017)

    Article  Google Scholar 

  11. J.J. Guo, M.K. Zhu, L. Li, T.H. Qing, C. Wang, L.Y. Liu, M.P. Zheng, Y.D. Hou, J. Appl. Phys. 121, 014101 (2017)

    Article  ADS  Google Scholar 

  12. B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V. Sathe, A. Senyshyn, R. Ranjan, Phys. Rev. B. 88, 224103 (2013)

    Article  ADS  Google Scholar 

  13. M.K. Niranjan, P.K. Kumari, K. Banerjee, S. Asthana, J. Appl. Phys. 123, 244106 (2018)

    Article  ADS  Google Scholar 

  14. J. Suchanicz, A. Kania, P. Czaja, A. Budziak, A. Niewiadomski, J. Eur. Ceram. Soc. 38, 567 (2018)

    Article  Google Scholar 

  15. B. Jiang, T.M. Raeder, D.-Y. Lin, T. Grande, S.M. Selbach, Chem. Mater. 30, 2631 (2018)

    Article  Google Scholar 

  16. Y.X. Wei, N. Zhang, C.Q. Jin, W.T. Zhu, Y.M. Zeng, G. Xu, L. Gao, Z.Y. Jian, J. Am. Ceram. Soc. 102, 3598 (2019)

    Article  Google Scholar 

  17. F. Li, S.J. Zhang, T.N. Yang, Z. Xu, N. Zhang, G. Liu, J.J. Wang, J.L. Wang, Z.X. Cheng, Z.G. Ye, J. Luo, T.R. Shrout, L.Q. Chen, Nat. Commun. 7, 13807 (2016)

    Article  ADS  Google Scholar 

  18. F. Li, D.B. Lin, Z.B. Chen, Z.X. Cheng, J.L. Wang, C.C. Li, Z. Xu, Q.W. Huang, X.Z. Liao, L.Q. Chen, T.R. Shrout, S.J. Zhang, Nat. Mater. 17, 349 (2018)

    Article  ADS  Google Scholar 

  19. F. Li, M.J. Cabral, B. Xu, Z.X. Cheng, E.C. Dickey, J.M. LeBeau, J.L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L.Q. Chen, T.R. Shrout, S.J. Zhang, Science 364, 264 (2019)

    Article  ADS  Google Scholar 

  20. A.R. Paterson, H. Nagata, X.L. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P.B. Groszewicz, W. Jo, J.L. Jones, MRS Bull 43, 600 (2018)

    Article  Google Scholar 

  21. H.X. Yan, F. Inam, G. Viola, H.P. Ning, H.T. Zhang, Q.H. Jiang, T. Zeng, Z.P. Gao, M.J. Reece, J. Adv. Dielectr. 1, 107 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project no. 11704301), Natural Science Basic Research Plan in Shaanxi Province of China (Program no. 2018JQ1092 and 2019JM414) and President’s Fund of Xi’an Technological University (Project no. XAGDXJJ18006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxing Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhang, N., Xu, G. et al. Low-temperature dielectric anomaly in Bi0.5K0.5TiO3. Appl. Phys. A 125, 645 (2019). https://doi.org/10.1007/s00339-019-2930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2930-0

Navigation