Skip to main content
Log in

Sticking behavior and transformation of tin droplets on silicon wafers and multilayer-coated mirrors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicon wafer and multilayer-coated mirror samples were exposed to impact of drops of molten tin to examine the adhesion behavior and cleaning possibilities. The sticking of tin droplets to horizontal substrates was examined for different surface conditions in a high vacuum chamber. Silicon wafers without a coating, with thick oxide top layer, and also with differently capped Mo/Si multilayer coatings optimized for reflection at a wavelength of 13.5 nm were exposed to tin dripping. Depending on the substrate temperature and coating, adhesion as well as detachment with self-peeling and self-contraction of spreaded drops was observed. The adhesion strength of solidified tin splats decreased strongly with decreasing substrate temperature. Non-sticking surface conditions could be generated by substrate super-cooling. The morphology of non-sticking tin droplets was analyzed by profilometry. Adhering deposits were converted in situ via induction of tin pest by infection with gray tin powder and cooling of the samples. The phase transition was recorded by photographic imaging. It caused material embrittlement and detachment after structural transformation within several hours and enabled facile removal of tin contamination without coating damage. The temperature-dependent contamination behavior of tin drops has implications for the preferred operating conditions of extreme ultraviolet light sources with collection optics exposed to tin debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Josserand, S.T. Thoroddsen, Annu. Rev. Fluid Mech. 48, 365 (2016)

    Article  ADS  Google Scholar 

  2. R.E. Maringer, Mater. Sci. Eng. 98, 13 (1988)

    Article  Google Scholar 

  3. S. Chandra, P. Fauchet, J. Therm. Spray Technol. 18, 148 (2009)

    Article  ADS  Google Scholar 

  4. C.-H. Wang, H.-L. Tsai, W.-S. Hwang, Materials 10, 1 (2017)

    Article  ADS  Google Scholar 

  5. M. Pasandideh-Fard, R. Bhola, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transf. 41, 2929 (1998)

    Article  Google Scholar 

  6. S.D. Aziz, S. Chandra, Int. J. Heat Mass Transf. 43, 2841 (2000)

    Article  Google Scholar 

  7. M. Pasandideh-Fard, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transf. 45, 2229 (2002)

    Article  Google Scholar 

  8. N.Z. Mehdizadeh, S. Chandra, J. Mostaghimi, Sci. Technol. Adv. Mat. 4, 173 (2003)

    Article  Google Scholar 

  9. J. de Ruiter, D. Soto, K.K. Varanasi, Nat Phys 14, 35 (2018)

    Article  Google Scholar 

  10. I. Fomenkov et al., Adv. Opt. Technol. 6, 173 (2017)

    ADS  Google Scholar 

  11. M. van de Kerkhof et al., Proc. SPIE 10143, 101430D (2017)

    Google Scholar 

  12. T. Feigl et al., Proc. SPIE 8322, 832217 (2012)

    Article  Google Scholar 

  13. D.C. Brandt et al., Proc. SPIE 9048, 90480C (2014)

    Google Scholar 

  14. H. Mizoguchi et al., J. Laser Micro Nano Eng. 11, 276 (2016)

    Article  Google Scholar 

  15. N.R. Farrar, B.M. La Fontaine, I.V. Fomenkov, D.C. Brandt, Adv. Opt. Technol. 1, 279 (2012)

    ADS  Google Scholar 

  16. D. Elg, J.R. Sporre, G.A. Panici, S.N. Srivastava, D.N. Ruzic, J. Vac. Sci. Technol. A 34, 021305 (2016)

    Article  Google Scholar 

  17. D.T. Elg, G.A. Panici, S. Liu, G. Girolami, S.N. Srivastava, D.N. Ruzic, Plasma Chem. Plasma 223, 38 (2018)

    Google Scholar 

  18. G. Panici, D. Qerimi, D.N. Ruzic, Proc. SPIE 10143, 101432I (2017)

    Article  Google Scholar 

  19. N. Böwering, Mater. Chem. Phys. 198, 236 (2017)

    Article  Google Scholar 

  20. N. Böwering, C. Meier, J. Vac. Sci. Technol. B 36, 021602 (2018)

    Article  Google Scholar 

  21. W.J. Plumbridge, J. Mater. Sci: Mater. Electron. 18, 307 (2007)

    Google Scholar 

  22. B. Cornelius, S. Treivish, J. Rosenthal, M. Pecht, Microelectron. Reliab. 79, 175 (2017)

    Article  Google Scholar 

  23. A.D. Styrkas, Inorg. Mater. 39, 806 (2003)

    Article  Google Scholar 

  24. A.I. Ershov, N.R. Bowering, B.M. La Fontaine, S. De Dea, US patent 10185234 (22 January 2019).

  25. D. Ugur, A.J. Storm, R. Verberk, J.C. Brouwer, W.G. Sloof, Appl. Surf. Sci. 288, 673 (2014)

    Article  ADS  Google Scholar 

  26. A.S. Kuznetsov, M.A. Gleeson, F. Bijkerk, J. Phys. Condens. Matter 24, 052203 (2012)

    Article  ADS  Google Scholar 

  27. U. Kleineberg, T. Westerwalbesloh, W. Hachmann, U. Heinzmann, J. Tümmler, F. Scholze, G. Ulm, S. Muellender, Thin Solid Films 433, 230 (2003)

    Article  ADS  Google Scholar 

  28. Supplier: optiX fab, Jena, Germany.

  29. S.T. Thoroddsen, J. Sakakibara, Phys. Fluids 10, 1359 (1998)

    Article  ADS  Google Scholar 

  30. J.C. Bird, R. Dhiman, H.M. Kwon, K.K. Varanasi, Nature 503, 385 (2013)

    Article  ADS  Google Scholar 

  31. E. Bozorg-Grayeli, Z. Li, M. Asheghi, G. Delgado, A. Pokrovski, M. Panzer, D. Wack, K.E. Goodson, J. Appl. Phys. 112, 083504 (2012)

    Article  ADS  Google Scholar 

  32. V.V. Medvedev, J. Yang, A.J. Schmidt, A.E. Yakshin, R.W.E. van de Kruijs, E. Zoethout, F. Bijkerk, J. Appl. Phys. 118, 085101 (2015)

    Article  ADS  Google Scholar 

  33. D. Sotiropoulou, P. Nikolopoulos, J. Mater. Sci. 28, 356 (1993)

    Article  ADS  Google Scholar 

  34. S. Shakeri, S. Chandra, Int. J. Heat Mass Transf. 45, 4561 (2002)

    Article  Google Scholar 

  35. S. Chandra, C.T. Avedisian, Proc. R. Soc. London Ser. A 432, 13 (1991)

    Article  ADS  Google Scholar 

  36. S.T. Thoroddsen, K. Takahara, T.G. Etoh, Phys. Fluids 22, 051701 (2010)

    Article  ADS  Google Scholar 

  37. G. Zeng, S.D. McDonald, Q. Gu, S. Matsumura, K. Nogita, Cryst. Growth Des. 15, 5767 (2015)

    Article  Google Scholar 

  38. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was motivated by the ongoing industrial development of EUV light sources. We are grateful to the molecular and surface physics group at Bielefeld University for general support and for supplying Mo/Si-coated EUV mirror samples. Furthermore, we would like to thank Torsten Feigl and his team at optiX fab for generously providing several ML-coated mirror samples at our request. This research did not receive any specific grant from funding sources in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Böwering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böwering, N., Meier, C. Sticking behavior and transformation of tin droplets on silicon wafers and multilayer-coated mirrors. Appl. Phys. A 125, 633 (2019). https://doi.org/10.1007/s00339-019-2927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2927-8

Navigation