Advertisement

Applied Physics A

, 125:624 | Cite as

Surface plasmon resonance and coloration in stainless steel with a 2D periodic texture

  • Minseok Seo
  • Myeongkyu LeeEmail author
Article
  • 85 Downloads

Abstract

Although stainless steel (STS) is an alloy commonly used in both daily life and the industrial field, little is known about its plasmonic behavior. In this study, we investigated the surface plasmon resonance (SPR) phenomenon in two-dimensionally (2D) textured STS. A 2D periodic grating with a 500 nm pitch was fabricated by imprinting combined with electrochemical etching on the surface of 316L STS plates. Since the fabricated surface texture gave rise to SPR absorption peaks and structural colors, its resonance behavior was characterized in terms of light incident direction and polarization state; the dependence of the SPR wavelengths on these two parameters was theoretically calculated based on the grating-assisted light-coupling mechanism. The experimental results were in good agreement with the theoretical calculations. Grating-coupled SPR can be an effective tool to generate structural colors in STS and may be used in many applications including surface decoration, product identification, and anti-counterfeiting.

Notes

Acknowledgements

This work was supported by the R&D convergence program of the National Research Council of Science & Technology of Korea (CAP-16-10-KIMS).

References

  1. 1.
    A. Kosinova, D. Wang, E. Baradacs, B. Parditka, T. Kups, L. Klinger, Z. Erdelyi, P. Schaaf, E. Rabkin, Tuning the nanoscale morphology and optical properties of porous gold nanoparticles by surface passivation and annealing. Acta. Mater. 127, 108 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Zhu, C. Vannahme, E. Nielsen, N. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    A. Furrer, R. Spolenak, Colors of thin films of binary and ternary gold- and platinum-based alloys. Acta Mater. 66, 241 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Blaber, M. Arnold, M. Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 22, 143201 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111, 3806 (2007)CrossRefGoogle Scholar
  6. 6.
    K. Kelly, E. Coronado, L. Zhao, G. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003)CrossRefGoogle Scholar
  7. 7.
    Z. Wang, Y. Tang, M. Li, Y. Zhu, M. Li, L. Bai, M. Luoshan, W. Lei, X. Zhao, Plasmonic enhancement of the performance of dye-sensitized solar cells by incorporating TiO2 nanotubes decorated with Au nanoparticles. J. Alloys Compd. 714, 89 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Lee, J. Jang, J. Zhang, S. Yang, S. Park, H. Park, Highly efficient colored perovskite solar cells integrated with ultrathin subwavelength plasmonic nanoresonators. Sci. Rep. 7, 10640 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    L. Shao, X. Zhuo, J. Wang, Advanced plasmonic materials for dynamic color display. Adv. Mater. 30, 1704338 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Duan, S. Kamin, N. Liu, Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    K. Mayer, J. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Hwang, S. Shin, S. Hwang, J. Jung, J. Choi, B. Ju, J. Jeong, Flexible plasmonic color filters fabricated via nanotransfer printing with nanoimprint-based planarization. ACS Appl. Mater. Interfaces 9, 27351 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Clausen, E. Højlund-Nielsen, A. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. Asger Mortensen, Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 14, 4499 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    V. Klimas, V. Pakstas, I. Vrublevsky, K. Chernyakova, A. Jagminas, Fabrication and characterization of anodic films onto the Type-304 stainless steel in glycerol electrolyte. J. Phys. Chem. C 117, 20730 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Degueldre, L. Fuks, E. Schenker, Pre-oxidation of stainless steel: a study by diffuse reflection spectroscopy. Appl. Surf. Sci. 134, 254 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    D. Adams, V. Hodges, D. Hirschfeld, M. Rodriguez, J. McDonald, P. Kotula, Nanosecond pulsed laser irradiation of stainless steel 304 L: oxide growth and effects on underlying metal. Surf. Coat. Technol. 222, 1 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Rosenkranz, L. Reinert, C. Gachot, H. Aboufadl, S. Grandthyll, K. Jacobs, F. Muller, F. Mucklich, Oxide formation, morphology, and nanohardness of laser-patterned steel surfaces. Adv. Eng. Mater. 17, 1234 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Dusser, Z. Sagan, H. Soder, N. Faure, J. Colombier, M. Jourlin, E. Audouard, Controlled nanostructures formation by ultrafast laser pulses for color marking. Opt. Express 18, 2913 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    K. Liu, X. Li, C. Xie, K. Wang, Q. Zhou, R. Qiu, Formation of sub-200 nm nanostructure on Fe film irradiated by femtosecond laser. Opt. Laser Technol. 94, 28 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, W. Huang, Femtosecond laser color marking stainless steel surface with different wavelengths. Appl. Phys. A 118, 1189 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, M. Hong, Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring. Appl. Surf. Sci. 328, 405 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    G. Lazzini, L. Romoli, F. Tantussi, F. Fuso, Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Opt. Laser Technol. 107, 435 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    M. Seo, M. Lee, Grating-coupled surface plasmon resonance on bulk stainless steel. Opt. Express 25, 26939 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    M. Shimizu, T. Yamada, K. Sasaki, A. Takada, H. Nomura, F. Iguchi, H. Yugami, Anisotropic multi-step etching for large-area fabrication of surface microstructures on stainless steel to control thermal radiation. Sci. Technol. Adv. Mater. 16, 025001 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, New York, 2006)CrossRefGoogle Scholar
  26. 26.
    S. Hayashi, T. Okamoto, Plasmonics: visit the past to know the future. J. Phys. D Appl. Phys. 45, 433001 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    D. Sarid, W. Challener, Modern Introduction to Surface Plasmons (Cambridge University Press, New York, 2010)CrossRefGoogle Scholar
  28. 28.
    B. Bhatnagar, A. Pathak, D. Menke, P. Cornish, K. Gangopadhyay, V. Korampally, S. Gangopadhyay, Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD. Nanotechnology 23, 495201 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Ren, K. Kim, X. Chong, A. Wang, Effect of finite metallic grating size on Rayleigh anomaly-surface plasmon polariton resonances. Opt. Express 23, 28868 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    E. Hecht, Optics, 2nd edn. (Addition-Wesley, New York, 1990)Google Scholar
  31. 31.
    T. Zinenko, V. Byelobrov, M. Marciniak, J. Čtyroký, A. Nosich, Grating resonances on periodic arrays of sub-wavelength wires and strips: from discoveries to photonic device applications. Contemp. Optoelectron. Mater. Metamater. Device Appl. Springer Ser. Opt. Sci. 199, 65 (2016)Google Scholar
  32. 32.
    V. Yachin, T. Zinenko, S. Mizrakhy, Resonance enhancement of Faraday rotation in double-periodic gyromagnetic layers analyzed by the method of integral functionals. J. Opt. Soc. Am. B 35, 851 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    R. Ng, X. Goh, J. Yang, All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. Opt. Express 23, 32597 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations