Advertisement

Applied Physics A

, 125:619 | Cite as

Investigation on the growth, spectral, thermal, mechanical, electrical, laser damage threshold and third-order nonlinear optical studies of 4-acetylanilinium perchlorate (4AAPCl) semi-organic single crystal for optical limiting applications

  • M. Suriya
  • B. Milton Boaz
  • K. Sakthi MurugesanEmail author
Article
  • 53 Downloads

Abstract

Single crystal of 4-acetylanilinium perchlorate (4AAPCl) was obtained by slow evaporation technique. The grown 4AAPCl crystal characterized by single-crystal X-ray diffraction and powder XRD confirms that the crystal belongs to monoclinic system with the space group P21/c. The functional groups present in the crystal were analyzed using infrared, Raman and NMR spectral studies. The optical absorption properties of the grown material were ascertained by UV–visible NIR analysis. The crystal has an emission peak in the green region and higher laser damage threshold of 3.72 GW/cm2. The electrical properties of the grown crystal were measured from the frequency and temperature variations of the dielectric profile. TGA reveals that the 4AAPCl crystal was thermally stable up to 190 °C. Microhardness test showed that the grown crystal is soft in nature. The linear polarizability (α) and first-order hyperpolarizability (β) related to NLO activity of the crystal have been also calculated. The optical limiting action and third-order optical nonlinearity of the grown crystal were accurately measured using a standard Z-scan method.

Notes

Acknowledgements

One of the authors (M. Suriya) would like to thank, Presidency College, Chennai-05, for providing FT-IR and UV as a National Facility under project no. SR/FST/College-098/2012(C). The authors also thank SAIF, IIT Madras, Chennai-36, for providing facilities such as X-ray diffraction analysis, FT-RAMAN, FT-NMR, photoluminescence, and thermal measurements. Also, the authors wish to thank Loyola College, Chennai, for providing the microhardness and dielectric facilities.

References

  1. 1.
    P. Karuppasamy, T. Kamalesh, K. Anitha, S.A. Kalam, M.S. Pandian, P. Ramasamy, S. Verma, S.V. Rao, Synthesis, crystal growth, structure and characterization of a novel third order nonlinear optical organic single crystal: 2-amino 4,6-dimethyl pyrimidine 4-nitrophenol. Opt. Mater. 84, 475–489 (2018).  https://doi.org/10.1016/j.optmat.2018.07.039 ADSCrossRefGoogle Scholar
  2. 2.
    M. Rajkumar, A. Chandramohan, Synthesis, growth, characterisation and laser damage threshold studies of N,N-dimethylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal: an efficient SHG material for electro-optic applications. Opt. Mater. 66, 261–270 (2017).  https://doi.org/10.1016/j.optmat.2017.02.022 ADSCrossRefGoogle Scholar
  3. 3.
    T. Suresh, S. Vetrivel, S. Gopinath, R.U. Mullai, A new metal-organic nonlinear optical material: l-asparagine indium chloride (LAIn) for photonics application. Chin. J. Phys. 56, 2773–2781 (2018).  https://doi.org/10.1016/j.cjph.2018.10.007 CrossRefGoogle Scholar
  4. 4.
    J.S. Ponraj, Z.Q. Xu, S.C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, Q. Bao, Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27, 462001–462033 (2016).  https://doi.org/10.1088/0957-4484/27/46/462001 CrossRefGoogle Scholar
  5. 5.
    M.K. Mohan, S. Ponnusamy, C. Muthamizhchelvan, Crystal growth and properties of novel organic nonlinear optical crystals of 4-nitrophenol urea. Mater. Chem. Phys. 195, 224–228 (2017).  https://doi.org/10.1016/j.matchemphys.2017.04.025 CrossRefGoogle Scholar
  6. 6.
    K. Parasuraman, K.S. Murugesan, R. Uthrakumar, S.J. Das, B.M. Boaz, Growth, optical, mechanical and dielectric studies on NLO active pure and metal ion doped single crystals of bis-thiourea zinc chloride. Phys. B 406, 3856–3860 (2011).  https://doi.org/10.1016/j.physb.2011.07.011 ADSCrossRefGoogle Scholar
  7. 7.
    K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Synthesis, growth, structure and characterization of 1-Ethyl-2-(2-p-tolyl-vinyl)-pyridinium iodide (TASI)—an efficient material for third-order nonlinear optical applications. Mater. Chem. Phys. 188, 131–142 (2017).  https://doi.org/10.1016/j.matchemphys.2016.12.008 CrossRefGoogle Scholar
  8. 8.
    K. Senthil, S. Kalainathan, A.R. Kumar, P.G. Aravindan, Investigation on synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv. 4, 56112–56127 (2014).  https://doi.org/10.1039/C4RA09112D CrossRefGoogle Scholar
  9. 9.
    T. Shanmugavadivu, K. Senthilkumar, M. Dhandapani, P. Muthuraja, S. Balachandar, M.S. Raman, Theoretical and experimental evaluation of a new organic proton transfer crystal aminoguanidinium p-nitrobenzoate monohydrate for optical limiting applications. J. Phys. Chem. Solids 111, 82–94 (2017).  https://doi.org/10.1016/j.jpcs.2017.07.015 ADSCrossRefGoogle Scholar
  10. 10.
    V. Subhashini, S. Ponnusamy, C. Muthamizhchelvan, B. Dhanalakshmi, Growth and characterization of piperazinium 4-nitrophenolate monohydrate (PNP): a third order nonlinear optical material. Opt. Mater. 35, 1327–1334 (2013).  https://doi.org/10.1016/j.optmat.2013.01.032 ADSCrossRefGoogle Scholar
  11. 11.
    A. Priyadharshini, S. Kalainathan, Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal. Opt. Mater. 78, 35–43 (2018).  https://doi.org/10.1016/j.optmat.2018.02.017 ADSCrossRefGoogle Scholar
  12. 12.
    M. Suriya, B.M. Boaz, G. Chakkaravarthi, G. Vinitha, K.S. Murugesan, Synthesis, crystal growth, structural, spectral, thermal, optical characteristics and density functional theory calculations of a novel third-order nonlinear optical material: 4-acetylanilinium dihydrogen phosphate (4AADP) single crystals. J. Mol. Struct. 1180, 330–343 (2019).  https://doi.org/10.1016/j.molstruc.2018.12.001 ADSCrossRefGoogle Scholar
  13. 13.
    B. Ballesteros, L. Santos, A reinvestigation of the molecular structures, vibrations and rotation of methyl group in o-methylaniline in S0 and S1 states studied by laser induced fluorescence spectroscopy and ab initio calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58, 1069–1081 (2002).  https://doi.org/10.1016/S1386-1425(01)00582-0 ADSCrossRefGoogle Scholar
  14. 14.
    B. Ballesteros, L. Santos, E. Martinez, Molecular structure of van der Waals complex of o- and m-methylaniline with CF3Cl, CF3H, CF4 and CH4 studied by laser induced fluorescence spectroscopy and ab initio calculations. J. Mol. Struct. 612, 13–18 (2002).  https://doi.org/10.1016/S0022-2860(02)00045-5 ADSCrossRefGoogle Scholar
  15. 15.
    M. Rajkumar, P. Muthuraja, M. Dhandapani, A. Chandramohan, Supramolecular network through N–H..O, O–H..O and C–H..O hydrogen bonding interaction and density functional theory studies of 4-methylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal. J. Mol. Struct. 1153, 192–201 (2018).  https://doi.org/10.1016/j.molstruc.2017.10.013 ADSCrossRefGoogle Scholar
  16. 16.
    P. Vivek, A. Suvitha, P. Murugakoothan, Growth, spectral, anisotropic, second and third order nonlinear optical studies on potential nonlinear optical crystal anilinium perchlorate (AP) for NLO device fabrications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 134, 517–525 (2015).  https://doi.org/10.1016/j.saa.2014.05.051 ADSCrossRefGoogle Scholar
  17. 17.
    S. Aruna, G. Bhagavannarayana, M. Palanisamy, P.C. Thomas, B. Varghese, P. Sagayaraj, Growth, morphological, mechanical and dielectric studies of semi organic NLO single crystal: l-argininium perchlorate. J. Cryst. Growth 300, 403–408 (2007).  https://doi.org/10.1016/j.jcrysgro.2006.11.296 ADSCrossRefGoogle Scholar
  18. 18.
    A. Arunkumar, P. Ramasamy, Studies on the structure, growth and characterization of morpholinium perchlorate single crystals. J. Cryst. Growth 388, 124–131 (2014).  https://doi.org/10.1016/j.jcrysgro.2013.10.005 ADSCrossRefGoogle Scholar
  19. 19.
    I.C. Ignatius, S. Rajathi, K. Kirubavathi, K. Selvaraju, Enhancement of second harmonic generation efficiency, laser damage threshold and optical properties of cobalt chloride doped with l-alanine single crystal. J. Nonlinear Opt. Phys. Mater. 25, 1650017 (2016).  https://doi.org/10.1142/S021886351650017X.S ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Jr Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresaman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc. (Gaussian, Wallingford, CT, 2009)Google Scholar
  21. 21.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).  https://doi.org/10.1103/PhysRevB.37.785 ADSCrossRefGoogle Scholar
  22. 22.
    H.B. Schlegal, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3, 214–218 (1982).  https://doi.org/10.1002/jcc.540030212 CrossRefGoogle Scholar
  23. 23.
    C. Dominik, K. Branko, 4-Acetylanilinium perchlorate. Acta Cryst. E63, 04672 (2007)Google Scholar
  24. 24.
    G. Varsanyi, Vibrational Spectra of Benzene Derivatives, 1st edn. (Academic Press, New York, 1969)Google Scholar
  25. 25.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn. (Wiley, New York, 2001)Google Scholar
  26. 26.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn. (Academic Press, New York, 1990)Google Scholar
  27. 27.
    D. Shoba, M. Karabacak, S. Periandy, S. Ramalingam, FT-IR and FT-Raman vibrational analysis, ab initio HF and DFT simulations of isocyanic acid 1-naphthyl ester. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 81, 504–518 (2011).  https://doi.org/10.1016/j.saa.2011.06.044 ADSCrossRefGoogle Scholar
  28. 28.
    T. Kolev, Vibrational assignment of in-and out-of-plane modes of some aromatic and arylaliphatic ketones. J. Mol. Struct. 349, 381–384 (1995).  https://doi.org/10.1016/0022-2860(95)08789-X ADSCrossRefGoogle Scholar
  29. 29.
    B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, Washington, DC, 1999)Google Scholar
  30. 30.
    S.M.B. Hosseini Ghazvini, P. Safari, A. Mobinikhaledi, H. Moghanian, H. Rasouli, Synthesis, characterization, anti-diabetic potential and DFT studies of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde oxime. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 205, 111–131 (2018).  https://doi.org/10.1016/j.saa.2018.07.009 ADSCrossRefGoogle Scholar
  31. 31.
    V.V. Ghazaryan, M. Fleck, A.M. Petrosyan, Sarcosine sarcosinium tetrafluoroborate and sarcosine sarcosinium perchlorate: synthesis, structure and vibrational spectra. J. Mol. Struct. 1021, 130–137 (2012).  https://doi.org/10.1016/j.molstruc.2012.04.063 ADSCrossRefGoogle Scholar
  32. 32.
    D. Manimaran, C.J. John, V.K. Rastogi, I.H. Joe, Growth and vibrational spectral investigation of nonlinear optical crystal l-argininum perchlorate-DFT study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109, 173–178 (2013).  https://doi.org/10.1016/j.saa.2013.02.024 ADSCrossRefGoogle Scholar
  33. 33.
    A.M. Petrosyan, Vibrational spectra of l-histidine perchlorate and l-histidine tetrafluoroborate. Vib. Spectrosc. 43, 284–289 (2007).  https://doi.org/10.1016/j.vibspec.2006.03.001 CrossRefGoogle Scholar
  34. 34.
    P.S. Kalsi, Spectroscopy of Organic Compounds, 2nd edn. (Wiley Eastern Ltd, New Delhi, 1995)Google Scholar
  35. 35.
    J.V. Jovita, K. Boopathi, P. Ramasamy, A. Ramanand, P. Sagayaraj, Synthesis, growth and characterization of 4-methyl anilinium phenolsulfonate single crystal. J. Cryst. Growth 380, 218–223 (2013).  https://doi.org/10.1016/j.jcrysgro.2013.06.027 ADSCrossRefGoogle Scholar
  36. 36.
    B.C. Hemaraju, M.A. Ahlam, N. Pushpa, K.M. Mahadevan, A.P. Gnana Prakash, Synthesis, growth and characterization of a new promising organic nonlinear optical crystal: 4-nitrophenyl hydrazone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 854–860 (2015).  https://doi.org/10.1016/j.saa.2015.07.031 CrossRefGoogle Scholar
  37. 37.
    C.N.R. Rao, Ultra-Violet and Visible Spectroscopy: Chemical Applications, 3rd edn. (Butterworths, London, 1975)Google Scholar
  38. 38.
    S. Leela, R. Hema, H. Stoeckli-Evans, K. Ramamurthi, G. Bhagavannarayana, Design, synthesis, growth and characterization of 4-methoxy-4′-dimethylamino-benzylidene aniline (MDMABA): a novel third order nonlinear optical material. Spectrochim. Acta Part A Mol. Biomol. 77, 927–932 (2010).  https://doi.org/10.1016/j.saa.2010.08.012 ADSCrossRefGoogle Scholar
  39. 39.
    M. Divya Bharathi, G. Ahila, J. Mohana, G. Chakkaravarthi, G. Anabalagan, Structural, optical, thermal and mechanical characterization of an organic nonlinear optical material: 4-methyl-3-nitrobenzoic acid single crystal. J. Phys. Chem. Solids 98, 290–297 (2016).  https://doi.org/10.1016/j.jpcs.2016.07.024 ADSCrossRefGoogle Scholar
  40. 40.
    G. Anandha Babu, P. Ramasamy, J. Philip, Studies on the growth and physical properties of nonlinear optical crystal: 2-amino-5-nitropyridinium-toluenesulfonate. Mater. Res. Bull. 46, 631–634 (2011).  https://doi.org/10.1016/j.materresbull.2011.02.010 CrossRefGoogle Scholar
  41. 41.
    G.A. Babu, R.P. Ramasamy, P. Ramasamy, V.K. Kumar, Synthesis, crystal growth, and characterization of an organic nonlinear optical donor-π-acceptor single crystal: 2-amino-5-nitropyridinium-toluenesulfonate. Cryst. Growth Des. 9, 3333–3337 (2009).  https://doi.org/10.1021/cg9001384 CrossRefGoogle Scholar
  42. 42.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Solidi 15, 627–637 (1966).  https://doi.org/10.1002/pssb.19660150224 ADSCrossRefGoogle Scholar
  43. 43.
    S. Karthigha, S. Kalainathan, F. Hamada, M. Yamada, Y. Kondo, Synthesis, growth and third-order nonlinear optical properties of quinolinium single crystal-PCLQI. RSC Adv. 6, 33159–33169 (2016).  https://doi.org/10.1039/C6RA05055G CrossRefGoogle Scholar
  44. 44.
    P. Jayaprakash, M.P. Mohamed, P. Krishnan, M. Nageshwari, G. Mani, M.L. Caroline, Growth, spectral, thermal, laser damage threshold, micro hardness, dielectric, linear and nonlinear optical properties of an organic single crystal: l-phenylalanine DL-mandelic acid. Phys. B 503, 25–31 (2016).  https://doi.org/10.1016/j.physb.2016.09.010 ADSCrossRefGoogle Scholar
  45. 45.
    P. Sangeetha, P. Jayaprakash, M. Nageshwari, C.R. Thaya Kumari, S. Sudha, M. Prakash, G. Vinitha, M.L. Caroline, Growth and characterization of an efficient new NLO single crystal l-phenylalanine d-methionine for frequency conversion and optoelectronic applications. Phys. B 525, 164–174 (2017).  https://doi.org/10.1016/j.physb.2017.08.037 ADSCrossRefGoogle Scholar
  46. 46.
    R. Surekha, R. Gunaseelan, P. Sagayaraj, K. Ambujam, l-Phenylalanine l-phenylalaninium bromide—a new nonlinear optical material. R. Soc. Chem. 16, 7979–7989 (2014).  https://doi.org/10.1039/C4CE00718B CrossRefGoogle Scholar
  47. 47.
    K. Senthil, S. Kalainathan, A.R. Kumar, Growth and characterization of an organic single crystal: 2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide. Spectrochim. Acta Part A Mol. Biomol. 125, 335–344 (2014).  https://doi.org/10.1016/j.saa.2014.01.109 ADSCrossRefGoogle Scholar
  48. 48.
    A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan, P. Ramasamy, A comparative study on the growth and characterization of nonlinear optical amino acid crystals: l-alanine (LA) and l-alanine alaninium nitrate (LAAN). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 297–304 (2008).  https://doi.org/10.1016/j.saa.2007.12.023 ADSCrossRefGoogle Scholar
  49. 49.
    M. Nageshwari, P. Jayaprakash, C.R. Thaya Kumari, G. Vinitha, M.L. Caroline, Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: l-valinium l-valine chloride. Phys. B 511, 1–9 (2017).  https://doi.org/10.1016/j.physb.2017.01.027 ADSCrossRefGoogle Scholar
  50. 50.
    A.C. Peter, M. Vimalan, P. Sagayaraj, J. Madhavan, Thermal, optical, mechanical and electrical properties of a novel NLO active l-phenylalanine l-phenylalaninium perchlorate single crystals. Phys. B 405, 65–71 (2010).  https://doi.org/10.1016/j.physb.2009.08.035 ADSCrossRefGoogle Scholar
  51. 51.
    T. Mallik, T. Kar, Optical, thermal and structural characterization of an NLO crystal, l-arginine perchlorate. J. Cryst. Growth 274, 251–255 (2005).  https://doi.org/10.1016/j.jcrysgro.2004.09.094 ADSCrossRefGoogle Scholar
  52. 52.
    S. Pandiarajan, M. Umadevi, R.K. Rajaram, V. Ramakrishnan, Infrared and Raman spectroscopic studies of l-valine l-valinium perchlorate monohydrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 62, 630–636 (2005).  https://doi.org/10.1016/j.saa.2005.02.008 ADSCrossRefGoogle Scholar
  53. 53.
    P. Vijayakumar, G.A. Babu, P. Ramasamy, Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-toluidinium p-toluenesulphonate. Mater. Res. Bull. 47, 957–962 (2012).  https://doi.org/10.1016/j.materresbull.2012.01.011 CrossRefGoogle Scholar
  54. 54.
    J.C. Anderson, Dielectrics, 1st edn. (Wiley, London, 1964)Google Scholar
  55. 55.
    D. Xue, K. Kitamura, Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun. 122, 537–541 (2002).  https://doi.org/10.1016/S0038-1098(02)00180-1 ADSCrossRefGoogle Scholar
  56. 56.
    A. Gandhimathi, R.T. Karunakaran, A.E. Kumaran, S. Prabahar, Spectroscopic and quantum chemical perspectives on 2-amino 5-methylpyridinium 4-nitrobenzoate—an organic single crystals for optoelectronics device applications. Opt. Laser Technol. 103, 291–299 (2018).  https://doi.org/10.1016/j.optlastec.2018.01.053 ADSCrossRefGoogle Scholar
  57. 57.
    B.W. Mott, Micro-indentation Hardness Testing (Butterworths, London, 1956)Google Scholar
  58. 58.
    H.S. Guder, E. Sahin, O. Sahin, H. Gocmez, C. Duran, H.A. Cetinkara, Vickers and Knoop indentation microhardness study of β-SiAlON ceramic. Acta Phys. Pol. A 120, 1026–1033 (2011)CrossRefGoogle Scholar
  59. 59.
    E.M. Onitsch, The present status of testing the hardness of materials. Mikroskopie 95, 12–14 (1950)Google Scholar
  60. 60.
    N. Vijayan, G. Bhagavannarayana, R. RameshBabu, R. Gopalakrisnan, K.K. Maurya, P. Ramasamy, A comparative study on solution- and Bridgman-grown single crystals of benzimidazole by high-resolution X-ray diffractometry, Fourier transform infrared, microhardness, laser damage threshold, and second-harmonic generation measurements. Cryst. Growth Des. 6, 1542–1546 (2006).  https://doi.org/10.1021/cg060002g CrossRefGoogle Scholar
  61. 61.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions, 1st edn. (Wiley, London, 1976)Google Scholar
  62. 62.
    T. Karakurt, M. Dincer, A. Cetin, M. Sekerci, Molecular structure and vibrational bands and chemical shift assignments of 4-ally-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione by DFT and ab initio HF calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 77, 189–198 (2010).  https://doi.org/10.1016/j.saa.2010.05.006 ADSCrossRefGoogle Scholar
  63. 63.
    G.Ö. Tarı, Ü. Ceylan, E. Ağar, H. Eserci, Crystal structure, spectroscopic investigations and quantum chemical computational study of 2-[(3-nitrophenylimino)methyl)]-5-diethylaminophenol. J. Mol. Struct. 1126, 83–93 (2016).  https://doi.org/10.1016/j.molstruc.2016.01.058 ADSCrossRefGoogle Scholar
  64. 64.
    J. George, D. Sajan, J. Alex, A. Aravind, G. Vinitha, R. Chitra, An experimental and computational approach to electronic and optical properties of diglycine barium chloride monohydrate crystal: applications to NLO and OLED. Opt. Laser Technol. 105, 207–220 (2018).  https://doi.org/10.1016/j.optlastec.2018.02.056 ADSCrossRefGoogle Scholar
  65. 65.
    C.R.T. Kumari, M. Nageshwari, R.G. Raman, M.L. Caroline, Crystal growth, spectroscopic, DFT computational and third harmonic generation studies of nicotinic acid. J. Mol. Struct. 1163, 137–146 (2018).  https://doi.org/10.1016/j.molstruc.2018.02.091 ADSCrossRefGoogle Scholar
  66. 66.
    V. Sivasubramani, V. Mohankumar, M. Senthil Pandian, P. Ramasamy, Synthesis, crystal growth, physicochemical properties and quantum chemical investigations on D-π-A type organic single crystal: 2-amino-5-nitropyridinium p-phenolsulfonate (2A5NPP) for nonlinear optical (NLO) applications. Cryst. Eng. Commun. 19, 5662–5678 (2017).  https://doi.org/10.1039/C7CE01202K CrossRefGoogle Scholar
  67. 67.
    N. Sudharsana, G. Subramanian, V. Krishnakumar, R. Nagalakshmi, Growth and characterization of anilinium hydrogen sulfate (AHS) single crystals: an organic nonlinear optical material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 798–805 (2012).  https://doi.org/10.1016/j.saa.2012.07.048 ADSCrossRefGoogle Scholar
  68. 68.
    M.C. Sreenath, I.H. Joe, V.K. Rastogi, Third-order optical nonlinearities of 1,5-diaminoanthraquinone for optical limiting application. Opt. Laser Technol. 108, 218–234 (2018).  https://doi.org/10.1016/j.optlastec.2018.06.056 ADSCrossRefGoogle Scholar
  69. 69.
    D.A. Kleinman, Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962).  https://doi.org/10.1103/PhysRev.126.1977 ADSCrossRefGoogle Scholar
  70. 70.
    M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, Growth and physical characterization of organic nonlinear optical single crystal: N,N′-diphenylguanidinium formate. Opt. Laser Technol. 91, 159–165 (2017).  https://doi.org/10.1016/j.optlastec.2016.12.027 ADSCrossRefGoogle Scholar
  71. 71.
    K. Senthil, S. Kalainathan, Y. Kondo, F. Hamada, M. Yamada, Investigation on the crystal growth, molecular structure and nonlinear optical susceptibilities of 2-[2-(4-Ethoxy-phenyl) vinyl]-1-ethyl-stilbazolium iodide (EESI) by Z-scan technique using He–Ne laser for third-order nonlinear optical applications. Opt. Laser Technol. 90, 242–252 (2017).  https://doi.org/10.1016/j.optlastec.2016.10.019 ADSCrossRefGoogle Scholar
  72. 72.
    J. Jayabharathi, V. Thanikachalam, R. Sathishkumar, K. Jayamoorthy, Physico-chemical studies of fused phenanthrimidazole derivative as sensitive NLO material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 101, 249–253 (2013).  https://doi.org/10.1016/j.saa.2012.09.089 ADSCrossRefGoogle Scholar
  73. 73.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).  https://doi.org/10.1109/3.53394 ADSCrossRefGoogle Scholar
  74. 74.
    T. Thilak, M.B. Ahamed, G. Vinitha, Third order nonlinear optical properties of potassium dichromate single crystals by Z-scan technique. Optik 124, 4716–4720 (2013).  https://doi.org/10.1016/j.ijleo.2013.01.111 ADSCrossRefGoogle Scholar
  75. 75.
    C.R.T. Kumari, M. Nageshwari, S. Sudha, M.L. Caroline, Growth and characterization of an efficient semi organic single crystal: sodium hydrogen oxalate monohydrate. Chin. J. Phys. 56, 2673–2683 (2018).  https://doi.org/10.1016/j.cjph.2018.09.038 CrossRefGoogle Scholar
  76. 76.
    C. Vesta, R. Uthrakumar, B. Varghese, S.M.N. Priya, S.J. Das, Growth, structural investigation and characterization on novel organic NLO single crystal: tri-nitrophenol para hydroxyacetophenone. J. Cryst. Growth 311, 1516–1520 (2009).  https://doi.org/10.1016/j.jcrysgro.2008.10.115 ADSCrossRefGoogle Scholar
  77. 77.
    K. Nivetha, W. Madhuri, Structural, spectral, thermal, and optical studies of stilbazolium derivative crystal: (E)-4-(3-hydroxy-4-methoxystyryl)-1-methyl pyridinium iodide monohydrate. Opt. Laser Technol. 109, 496–503 (2019).  https://doi.org/10.1016/j.optlastec.2018.08.035 ADSCrossRefGoogle Scholar
  78. 78.
    K.K. Nagaraja, S. Pramodini, A.S. Kumar, H.S. Nagaraja, P. Poornesh, D. Kekuda, Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431–439 (2013).  https://doi.org/10.1016/j.optmat.2012.09.028 ADSCrossRefGoogle Scholar
  79. 79.
    S.A. Kumar, J. Senthilselvan, G. Vinitha, Third order nonlinearity and optical limiting behaviors of Yb:YAG nanoparticles by Z-scan technique. Opt. Laser Technol. 109, 561–568 (2019).  https://doi.org/10.1016/j.optlastec.2018.08.037 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Suriya
    • 1
  • B. Milton Boaz
    • 1
  • K. Sakthi Murugesan
    • 1
    Email author
  1. 1.Department of Physics, Presidency CollegeUniversity of MadrasChennaiIndia

Personalised recommendations