Skip to main content
Log in

Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, silicon dioxide (SiO2) spheres and gold nanoparticles (Au) were prepared. The SiO2 was used as a platform to deposit the gold nanoparticles. The SiO2 structures were synthesized employing the Stöber method. Monodisperse spherical particles with mean size of 293 nm were observed by transmission electron microscopy (TEM). The gold nanoparticles were attached to the dielectric platform trough in situ reduction. The UV–Vis spectrum of SiO2–Au showed an absorption band in the visible region associated with the presence of the gold nanoparticles. The TEM micrographs confirmed decorated SiO2 spheres with the metallic nanoparticles of 5 nm in size. Nanofluid concentrations of 0.1–0.6 mg/ml of SiO2 decorated with Au nanoparticles dispersed in water were prepared. The functional groups of SiO2-functionalized spheres were followed by FTIR. The formation of gold nanoparticles was evidenced by UV–Vis spectroscopy. The crystalline structure of SiO2 spheres and SiO2 decorated with Au nanoparticles was determined by XRD. The thermal diffusivity as a function of concentration using the mode-mismatched thermal lens (TL) spectroscopy was studied. The results of TL spectroscopy showed an increase in the thermal diffusivity with an increase of SiO2 decorated with Au nanoparticle concentration in the nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Xue, S. Jia, J. Zhang, L. Tian, Thin Solid Films 517, 4593 (2009)

    Article  ADS  Google Scholar 

  2. S. Ammar, K. Ramesh, B. Vengadaesvaran, S. Ramesh, A. Arof, Electrochim. Acta 220, 417 (2016)

    Article  Google Scholar 

  3. Z. Fanglong, X. Qun, F. Qianqian, L. Rangtong, L. Kejing, Surf. Coat. Tech. 294, 90 (2016)

    Article  Google Scholar 

  4. I. Kim, E. Joachim, H. Choi, K. Kim, Nanomed-Nanotechnol. 11, 1407 (2015)

    Article  Google Scholar 

  5. W. Stöber, A. Fink, J. Colloid Interf. Sci. 26, 62 (1968)

    Article  ADS  Google Scholar 

  6. I. Rahman, P. Vejayakumaran, C. Sipaut, J. Ismail, C. Chee, Mat. Chem. Phys. 114, 328 (2009)

    Article  Google Scholar 

  7. I. Tavman, A. Turgui, M. Chirtoc, K. Hadjov, O. Fudym, S. Tavman, Heat Transfer Res. 41(3), 209 (2010)

    Article  Google Scholar 

  8. A. Abdelrazek, O. Alawi, S. Kazi, N. Yusoff, Z. Chowdhury, A. Sarhan, Int. Commun. Heat Mass Transfer 95, 161 (2018)

    Article  Google Scholar 

  9. E. Shahriarr, A. Bahrami, M. Varnamkaste, K. Behzad, SYLWAN 158(6), 333 (2015)

    Google Scholar 

  10. J. Jhon, L. Thomas, A. Kurian, A. George, R. Soc. Chem. 6, 62390–62398 (2016)

    Google Scholar 

  11. Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Angew Chem. Int. 41, 1153 (2002)

    Article  Google Scholar 

  12. A. Convertino, M. Cuscunà, F. Martelli, M. Manera, R. Rella, ACS 118, 685 (2014)

    Google Scholar 

  13. J. Kah, R. Wang, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, M. Olivo, Gold Bull. 41(1), 23 (2008)

    Article  Google Scholar 

  14. L. Wang, T. Cheang, S. Wang, Z. Hu, Z. Xing, W. Qu, A. Xu, J. Mater. Res. 27(18), 2425 (2012)

    Article  ADS  Google Scholar 

  15. A. Colombelli, M. Manera, A. Taurino, M. Catalano, A. Convertino, R. Rella, Sensors Actuat. B-Chem. 226, 589 (2016)

    Article  Google Scholar 

  16. J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, D. Cornejo-Monroy, R. Guitierrez-Fuentes, J.A. Pescador-Rojas, A. Cruz-Orea, C. Jacinto, Int. J. Thermophys. 33, 69 (2012)

    Article  ADS  Google Scholar 

  17. R. Carbajal-Valdez, J.L. Jiménez-Pérez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Alvarado-Noguez, I.C. Romero-Ibarra, J.G. Mendoza-Alvarez, Thermochim. Acta 657, 66 (2017)

    Article  Google Scholar 

  18. J. Shen, R. Lowe, R. SnookR, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  19. T. Matsoukas, E. Gulari, J. Colloid Interf. Sci. 124(1), 252 (1988)

    Article  ADS  Google Scholar 

  20. D. Cornejo-Monroy, J.A. Pescador-Rojas, J.F. Sánchez-Ramírez, J.L. Herrera-Pérez, Rev. Sup. Vac. 22(3), 44 (2009)

    Google Scholar 

  21. A. Bertoluza, C. Fangano, M. Morelli, J. Non-Cryst, Solids 48, 117 (1982)

    Google Scholar 

  22. M. Gunde, Phys. B 292, 286 (2000)

    Article  ADS  Google Scholar 

  23. J.L. Montaño-Priede, J.P. Coelho, A. Guerrero-Martínez, O. Peña-Rogriguez, U. Pal, J. Phys. Chem-US 121, 9543 (2017)

    Google Scholar 

  24. S. Wang, D. Wang, S. Smart, J. Diniz da Costa, Sci. Rep-UK 5, 1 (2015)

    Google Scholar 

  25. S. Shou-Cang, K. Wai, L. Chia, D. Yuan-Cai, B. Tan, Mat. Res. Bull. 46, 1665 (2011)

    Article  Google Scholar 

  26. C. Chang, Y. Cheng, Y. Chuin-Tih, Appl. Catal. A-GEN 174, 13 (1998)

    Article  Google Scholar 

  27. A. Lanje, S. Sharma, R. Pode, J. Chem. Pharm. Res. 2(3), 478 (2010)

    Google Scholar 

  28. V. Lenart, N. Astrath, R. Turchiello, G. Goya, S. Gómez, J. Appl. Phys. 123(8), 1 (2018)

    Article  Google Scholar 

  29. D.H. Kumar, H.E. Patel, V.R.R. Umar, T. Sundararajan, T. Pradeep, S. Das, Phys. Rev. Lett. 93, 144301 (2004)

    Article  ADS  Google Scholar 

  30. Z. Zheng, L. Qiu, G. Su, D. Tang, Y. Liao, C. Yunfa, J. Nanopart. Res. 13(12), 6887 (2011)

    Article  ADS  Google Scholar 

  31. E. Shahriari, M. Moradi, M. Raeisi, J. Theor. Appl. Phys. 10(4), 259 (2016)

    Article  ADS  Google Scholar 

  32. X. Huang, M. Alexandria, J. Med. 49, 1 (2011)

    Google Scholar 

  33. N. Chandrasekharan, P. Kamat, J. Hu, G. Jones, J. Phys. Chem. B 104, 11103 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Jiménez-Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netzahual-Lopantzi, Á., Sánchez-Ramírez, J.F., Jiménez-Pérez, J.L. et al. Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl. Phys. A 125, 588 (2019). https://doi.org/10.1007/s00339-019-2891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2891-3

Keywords

Navigation