Skip to main content

Advertisement

Log in

Nonlinear dynamic analysis of dielectric elastomer minimum energy structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a theoretical study of nonlinear dynamic behavior of a dielectric elastomer minimum energy structure (DEMES). While planar Dielectric Elastomer Actuators (DEA) solely poses material nonlinearity in their model, geometrical nonlinearity imposes additional challenge to model DEMES. Considering dielectric elastomer and bending frame, respectively, as a hyper-elastic film and an elastic beam, Euler–Lagrange equation is employed to derive the equation of motion of actuator subject to a harmonic voltage. Fixed point analysis of the equation of motion demonstrates supercritical pitchfork bifurcation with respect to film pre-stretch as bifurcation parameter. It is shown by simulation results that the system possesses harmonic resonances as well as superharmonic and subharmonic resonance. Investigating Poincare map of the time response indicates that by changing excitation frequency and amplitude the response transforms from periodic to quasiperiodic and eventually aperiodic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.-Y. Gu, J. Zhu, L.-M. Zhu, X. Zhu, A survey on dielectric elastomer actuators for soft robots. Bioinspiration Biomim 12, 011003 (2017)

    Article  ADS  Google Scholar 

  2. G. Kofod, M. Paajanen, S. Bauer, Self-organized minimum-energy structures for dielectric elastomer actuators. Appl Phys A 85, 141–143 (2006)

    Article  ADS  Google Scholar 

  3. J. Shintake, S. Rosset, D. Floreano, H. Shea, A soft robotic actuator using dielectric minimum energy structures, in 2nd International Conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles (2012)

  4. S. Rosset, O.A. Araromi, J. Shintake, H.R. Shea, Model and design of dielectric elastomer minimum energy structures. Smart Mater Struct 23, 085021 (2014)

    Article  ADS  Google Scholar 

  5. G. Kofod, W. Wirges, M. Paajanen, S. Bauer, Energy minimization for self-organized structure formation and actuation. Appl Phys Lett 90, 081916 (2007)

    Article  ADS  Google Scholar 

  6. G.-K. Lau, K.-R. Heng, A.S. Ahmed, M. Shrestha, Dielectric elastomer fingers for versatile grasping and nimble pinching. Appl Phys Lett 110, 182906 (2017)

    Article  ADS  Google Scholar 

  7. C.H. Nguyen, G. Alici, R. Mutlu, A compliant translational mechanism based on dielectric elastomer actuators. J Mech Des 136, 061009 (2014)

    Article  Google Scholar 

  8. M. Follador, A. Conn, J. Rossiter, Bistable minimum energy structures (BiMES) for binary robotics. Smart Mater Struct 24, 065037 (2015)

    Article  ADS  Google Scholar 

  9. O.A. Araromi, I. Gavrilovich, J. Shintake, S. Rosset, M. Richard, V. Gass et al., Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans Mechatron 20, 438–446 (2015)

    Article  Google Scholar 

  10. J. Zhao, J. Niu, D. McCoul, J. Leng, Q. Pei, A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. Meccanica 50, 2815–2824 (2015)

    Article  Google Scholar 

  11. Y. Tang, L. Qin, X. Li, C.-M. Chew, J. Zhu, "A frog-inspired swimming robot based on dielectric elastomer actuators, in intelligent robots and systems (IROS). IEEE/RSJ Int Conf 2017, 2403–2408 (2017)

    Google Scholar 

  12. W.-B. Li, W.-M. Zhang, H.-X. Zou, Z.-K. Peng, G. Meng, A novel variable stiffness mechanism for dielectric elastomer actuators. Smart Mater Struct 26, 085033 (2017)

    Article  ADS  Google Scholar 

  13. W.-B. Li, W.-M. Zhang, H.-X. Zou, Z. Peng, G. Meng, A fast rolling soft robot driven by dielectric elastomer. in IEEE/ASME Transactions on Mechatronics (2018)

  14. E.-F.M. Henke, K.E. Wilson, I.A. Anderson, Entirely soft dielectric elastomer robots. in Electroactive Polymer Actuators and Devices (EAPAD) 2017 (2017), p. 101631N

  15. M.T. Petralia, R.J. Wood, Fabrication and analysis of dielectric-elastomer minimum-energy structures for highly-deformable soft robotic systems. in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2357–2363

  16. S. Siu, L. Rhode-Barbarigos, S. Wagner, S. Adriaenssens, Dynamic relaxation study and experimental verification of dielectric-elastomer minimum-energy structures. Appl Phys Lett 103, 171906 (2013)

    Article  ADS  Google Scholar 

  17. F. Liu, Y. Zhang, L. Zhang, L. Geng, Y. Wang, N. Ni et al., Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimum-energy structures. Appl Phys A 122, 323 (2016)

    Article  ADS  Google Scholar 

  18. J. Zhu, S. Cai, Z. Suo, Nonlinear oscillation of a dielectric elastomer balloon. Polym Int 59, 378–383 (2010)

    Article  Google Scholar 

  19. J. Zhu, S. Cai, Z. Suo, Resonant behavior of a membrane of a dielectric elastomer. Int J Solids Struct 47, 3254–3262 (2010)

    Article  Google Scholar 

  20. T. Li, S. Qu, W. Yang, Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. Int J Solids Struct 49, 3754–3761 (2012)

    Article  Google Scholar 

  21. J. Sheng, H. Chen, B. Li, Y. Wang, Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Mater Struct 23, 045010 (2014)

    Article  ADS  Google Scholar 

  22. J. Zhang, H. Chen, B. Li, D. McCoul, Q. Pei, Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. Soft Matter 11, 7483–7493 (2015)

    Article  ADS  Google Scholar 

  23. F. Wang, T. Lu, T. Wang, Nonlinear vibration of dielectric elastomer incorporating strain stiffening. Int J Solids Struct 87, 70–80 (2016)

    Article  Google Scholar 

  24. P. Fan, H. Chen, Performance investigation of a dissipative dielectric elastomer generator by the damping model. Appl Phys A 124, 148 (2018)

    Article  ADS  Google Scholar 

  25. B. O’Brien, T. McKay, E. Calius, S. Xie, I. Anderson, Finite element modelling of dielectric elastomer minimum energy structures. Appl Phys A 94, 507–514 (2009)

    Article  ADS  Google Scholar 

  26. J. Zhao, J. Niu, D. McCoul, Z. Ren, Q. Pei, Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Appl Phys Lett 106, 133504 (2015)

    Article  ADS  Google Scholar 

  27. J. Zhao, S. Wang, Z. Xing, D. McCoul, J. Niu, B. Huang et al., Equivalent dynamic model of DEMES rotary joint. Smart Mater Struct 25, 075025 (2016)

    Article  ADS  Google Scholar 

  28. H. Goldstein, C. Poole, J. Safko, Classical Mechanics (Addison-Wesley, Reading, 1980), p. 426

    Google Scholar 

  29. R.W. Ogden, Non-linear Elastic Deformations (Courier Corporation, New York, 1997)

    Google Scholar 

  30. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, Cambridge, 2018)

    Book  Google Scholar 

  31. J. Zhao, S. Wang, D. McCoul, Z. Xing, B. Huang, L. Liu et al., Bistable dielectric elastomer minimum energy structures. Smart Mater Struct 25, 075016 (2016)

    Article  ADS  Google Scholar 

  32. D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, vol. 2 (Oxford University Press, Oxford, 1999)

    MATH  Google Scholar 

  33. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, Hoboken, 2008)

    MATH  Google Scholar 

  34. J. Zhang, L. Tang, B. Li, Y. Wang, H. Chen, Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J Appl Phys 117, 084902 (2015)

    Article  ADS  Google Scholar 

  35. S.S. Rao, F.F. Yap, Mechanical Vibrations, vol. 4 (Prentice Hall, Upper Saddle River, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hojjat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatanjou, H., Hojjat, Y. & Karafi, M. Nonlinear dynamic analysis of dielectric elastomer minimum energy structures. Appl. Phys. A 125, 583 (2019). https://doi.org/10.1007/s00339-019-2871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2871-7

Navigation