Skip to main content
Log in

Low-temperature thermoelectric performance of novel polyaniline/iron oxide composites with superior Seebeck coefficient

Applied Physics A Aims and scope Submit manuscript

Cite this article


The large amount of heat loss at low temperatures (up to 250 °C), more than 70% of the total waste heat, motivates the market to develop new materials for low-temperature thermoelectric applications. To this end, organic materials can be excellent potential candidates with the additional advantages of light weight, ease of synthesis and processing, eco-friendly and being sustainable materials. Herein, we demonstrate the synthesis of polyaniline (PANI) in its conductive emeraldine form via a facile chemical oxidative polymerization process. The conductivity of the fabricated PANI, with exceptional low degree of protonation and additional structure deflection, originates from the excess Cl anions/imines (–N=) interactions. Micro/nano-spheres and different regular shapes are formed with inherent nano-flakes/fibers structures. These structures are intrinsically ferric oxide clouds that finally result in a novel composite of PANI/ferric oxide, as confirmed via the FESEM, EDX, XRD and FTIR analyses. Different dopant concentrations (0.1–2 M HCl) and initiator concentrations (0.5–3 M FeCl3) were screened to identify the appropriate yield with the highest thermoelectric energy conversion efficiency. Our recipe with low degree of protonation resulted in semiconductor-to-metallic transformation point with a composite that has a superior Seebeck coefficient of 158 µV/k, which has not ever reported for pristine PANI and also with a moderate electrical conductivity of 0.0017 S/cm at 150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Exxonmobil’s 2017 outlook for energy: a view to 2040

  2. C. Gayner, K.K. Kar, Prog. Mater Sci. 83, 330–382 (2016)

    Article  Google Scholar 

  3. G. Chen, W. Xu, D. Zhu, J. Mater. Chem. C 5, 1–10 (2017)

    Google Scholar 

  4. S. El-Zohary, M. Shenashen, N.K. Allam, T. Okamoto, M. Haraguchi, J. Nanomater. 2013, 568175H (2013)

    Article  Google Scholar 

  5. G. Alan, A.G. MacDiarmid, A.J. Epstein, Chem. Soc. 88, 317–332 (1989)

    Google Scholar 

  6. K. Lee, S. Cho, S.H. Park, A.J. Heeger, C.W. Lee, S.H. Lee, Nature 441, 65–67 (2006)

    Article  ADS  Google Scholar 

  7. R.A. Talib, M.J. Abdullah, S.M. Mohammad, N.M. Ahmed, N.K. Allam, ECS J. Solid State Sci. Technol. 5, P142–P147 (2016)

    Article  Google Scholar 

  8. J. Li, X. Tang, H. Li, Y. Yan, Q. Zhang, Synth. Met. 160, 1153–1158 (2010)

    Article  Google Scholar 

  9. Z.H. Wang, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 45, 4190 (1992)

    Article  ADS  Google Scholar 

  10. Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, ACS Nano 4(4), 2445–2451 (2010)

    Article  Google Scholar 

  11. Y. Wang, S.M. Zhang, Y. Deng, J. Mater. Chem. A 4, 3554–3559 (2016)

    Article  Google Scholar 

  12. L. Wang, Q. Yao, W. Shi, S. Qu, L. Chen, Mater. Chem. Front. 1, 741–748 (2017)

    Article  Google Scholar 

  13. F. Erden, H. Li, X. Wang, F. Wang, C. He, Phys. Chem. Chem. Phys. 20, 9411 (2018)

    Article  Google Scholar 

  14. I.V. Chernyshova, M.F. Hochella, A.S. Madden, Phys. Chem. Chem. Phys. 9, 1736–1750 (2007)

    Article  Google Scholar 

  15. T. Wang, S. Zhou, C. Zhang, J. Lian, Y. Liang, W. Yuan, New J. Chem. 38, 46–49 (2014)

    Article  Google Scholar 

  16. A.B. Kaiser, Adv. Mater. 13, 927 (2001)

    Article  ADS  Google Scholar 

  17. J.M. Ginder, A.J. Epstein, A.G. MacDiarmid, Synth. Met. 29, 395–400 (1989)

    Article  Google Scholar 

  18. D.M. Bandgar, S.T. Navale, S.A. Vanalk, J.H. Kim, N.S. Harale, V.B. Patil, Synthesis. Synth. Met. 195, 350–358 (2014)

    Article  Google Scholar 

  19. V.J. Babu, S. Vempati, S. Ramakrishna, Mater. Sci. Appl. 4, 1–10 (2013)

    Google Scholar 

  20. K.L. Tan, B.T.G. Tan, Phys. Rev. B 39, 8070 (1989)

    Article  ADS  Google Scholar 

  21. V.A. Khati, S.B. Kondawar, V.A. Tabhane, Anal. Bioanal. Electrochem. 3(6), 614–624 (2011)

    Google Scholar 

  22. Y.W. Park, E.S. Choi, D.S. Suh, Synth. Met. 96, 81–86 (1998)

    Article  Google Scholar 

  23. G.H. Jon-Ker, J. Phys. Chem. Solids 9, 165–175 (1959)

    Article  ADS  Google Scholar 

  24. B.M. Warnes, F.F. Aplan, G. Simkovich, Solid State Ionics 12, 271–276 (1984)

    Article  Google Scholar 

  25. R. Gangopadhyay, A. De, S. Das, J. Appl. Phys. 87(5), 2363 (2000)

    Article  ADS  Google Scholar 

  26. R. Gangopadhyay, A. De, Eur. Polym. J. 35, 1985–1992 (1999)

    Article  Google Scholar 

Download references


This work was supported by The American University in Cairo.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nageh K. Allam.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badr, H., El-Mahallawi, I.S., Elrefaie, F.A. et al. Low-temperature thermoelectric performance of novel polyaniline/iron oxide composites with superior Seebeck coefficient. Appl. Phys. A 125, 524 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: