Skip to main content
Log in

Dielectric and magnetic properties of rare-earth-doped cobalt ferrites and their first-order reversal curve analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study focuses on the effects of rare-earth (R) ion substitutions namely Y, Sm and Pr ions on the structural, magnetic and electrical properties of cobalt ferrite (CFO) and the nature of their magnetic domains using the first-order reversal curve (FORC) analysis. These samples were synthesized using the sol–gel auto-combustion method. The powder X-ray diffraction analysis reveals that the Pr-substituted CFO crystallizes in a single-phase spinel structure, while a few traces of RFeO3 appear as minor phases in Sm- and Y-doped CFO. The scanning electron micrographs show that the substitution of R3+ ions causes a considerable reduction in the grain size. The studies on magnetic properties reveal that the saturation magnetization of R-substituted CFO decreased. The FORC analysis was done to know the domain state of magnetization and the nature of magnetic interactions among the grains. All the FORC diagrams depict a single peak with a single contour suggesting that all the synthesized samples have single domain particles and are comprised only of mono-magnetic phase. The electrical properties of the R-doped CFO compounds exhibit high values of dielectric constant at room temperature with the highest value for Pr-doped CFO. The activation energy determined using electrical properties is found to decrease with R doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, Science 309, 391–392 (2005)

    Google Scholar 

  2. M.V. Limaye, S.B. Singh, S.K. Date, D. Kothari, V.R. Reddy, A. Gupta, V. Sathe, R. Choudhary, S.K. Kulkarni, J. Phys. Chem. B 113, 9070–9076 (2009)

    Google Scholar 

  3. E. Mazario, N. Menéndez, P. Herrasti, M. Cañete, V. Connord, J. Carrey, J. Phys. Chem. C 117, 11405–11411 (2013)

    Google Scholar 

  4. C.V. Ramana, Y.D. Kolekar, K.K. Bharathi, B. Sinha, K. Ghosh, J. Appl. Phys. 114, 183907 (2013)

    ADS  Google Scholar 

  5. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, J. Appl. Phys. 110, 053910 (2011)

    ADS  Google Scholar 

  6. S. Prathapani, V.R. Monaji, T.V. Jayaraman, D. Das, J. Appl. Phys. 116, 023908 (2014)

    ADS  Google Scholar 

  7. D. Mukherjee, M. Hordagoda, R. Hyde, N. Bingham, H. Srikanth, S. Witanachchi, P. Mukherjee, A.C.S. Appl, Mater. Interfaces 5, 7450–7457 (2013)

    Google Scholar 

  8. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, J. Phys. Chem. C 115, 554–560 (2011)

    Google Scholar 

  9. A. Mikalauskaitė, R. Kondrotas, G. Niaura, A. Jagminas, J. Phys. Chem. C 119, 17398–17407 (2015)

    Google Scholar 

  10. V.R. Monaji, D. Das, J. Alloys Compd. 634, 99–103 (2015)

    Google Scholar 

  11. M.L. Kahn, Z.J. Zhang, Appl. Phys. Lett. 78, 3651–3653 (2001)

    ADS  Google Scholar 

  12. R. Pandit, K.K. Sharma, P. Kaur, R. Kumar, Mater. Chem. Phys. 148, 988–999 (2014)

    Google Scholar 

  13. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Dalton Trans. 46, 9010–9021 (2017)

    Google Scholar 

  14. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, D.V. Karpinsky, J. Phys. Chem. Sol. 111, 142–152 (2017)

    ADS  Google Scholar 

  15. S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393–405 (2018)

    ADS  Google Scholar 

  16. V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, J. Surf. Investig. 9, 17–23 (2015)

    Google Scholar 

  17. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Alloys Compd. 689, 383–393 (2016)

    Google Scholar 

  18. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Ceram. Int. 43, 12822–12827 (2017)

    Google Scholar 

  19. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Chin. Phys. B 25, 016102–016106 (2016)

    Google Scholar 

  20. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, M.M. Salem, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, D.A. Krivchenya, Phys. Solid State 59, 737–745 (2017)

    ADS  Google Scholar 

  21. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, J. Magn. Magn. Mater. 477, 9–16 (2019)

    ADS  Google Scholar 

  22. S. Mahalakshmi, M.K. Srinivasa, S. Nithiyanantham, J. Supercond. Novel Magn. 27, 2083–2088 (2014)

    Google Scholar 

  23. G. Dascalu, T. Popescu, M. Feder, O.F. Caltun, J. Magn. Magn. Mater. 333, 69–74 (2013)

    ADS  Google Scholar 

  24. K.K. Bharathi, C.V. Ramana, J. Mater. Res. 26, 584–591 (2011)

    ADS  Google Scholar 

  25. G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-da-Silva, P.C. Morais, M.A.G. Soler, Phys. Chem. Chem. Phys. 15, 19853–19861 (2013)

    Google Scholar 

  26. I.D. Mayergoyz, IEEE Trans. Magn 22, 603 (1986)

    ADS  Google Scholar 

  27. C.R. Pike, A.P. Roberts, K.L. Verosub, J. Appl. Phys. 85, 6660–6662 (1999)

    ADS  Google Scholar 

  28. R. Lavín, J.C. Denardin, J. Escrig, D. Altbir, A. Cortés, H. Gómez, IEEE Trans. Magn 44, 2808–2811 (2008)

    ADS  Google Scholar 

  29. C. Carvallo, A.R. Muxworthy, D.J. Dunlop, W. Williams, Earth. Planet. Sci. Lett. 213, 375–390 (2003)

    ADS  Google Scholar 

  30. M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Nanomaterials 9, 24 (2019)

    Google Scholar 

  31. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials 9, 202–213 (2019)

    Google Scholar 

  32. S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, J. Magn. Magn. Mater. 237, 276–282 (2001)

    ADS  Google Scholar 

  33. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, J. Phys.: Condens. Matter 15, 1783–17952 (2003)

    ADS  Google Scholar 

  34. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Google Scholar 

  35. R.A. Young, “The Rietveld Method” International Union of Crystallography (Oxford University Press, New York, 1996)

    Google Scholar 

  36. J. Rodriguez-Carvajal, FULLPROF program. Phys. B 192, 55–69 (1993)

    ADS  Google Scholar 

  37. S. Carbonin, F. Martignago, G. Menegazzo, A. Negro, Phys. Chem. Miner. 29, 503–514 (2002)

    ADS  Google Scholar 

  38. D. Treves, J. Appl. Phys. 36, 1033–1039 (1965)

    ADS  Google Scholar 

  39. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Mater. Chem. Phys. 114, 505–510 (2009)

    Google Scholar 

  40. N. Rezlescu, E. Rezlescu, J. Phys. IV France 7, C1225–C1226 (1997)

    Google Scholar 

  41. E. Ateia, M.A. Ahmed, A.K.E. Aziz, J. Magn. Magn. Mater. 311, 545–554 (2007)

    ADS  Google Scholar 

  42. M.A. Ahmed et al., Ceram. Inter. 33, 49–58 (2007)

    Google Scholar 

  43. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 457, 83–96 (2018)

    ADS  Google Scholar 

  44. V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, J. Magn. Magn. Mater. 464, 139–147 (2018)

    ADS  Google Scholar 

  45. S. Singhal, K. Chandra, J. Solid State Chem. 180, 296 (2007)

    ADS  Google Scholar 

  46. S. Chikazumi, Physics of Ferromagnetism, vol. 94, International Series of Monographs on Physics (Oxford University Press, Oxford, 2009)

    Google Scholar 

  47. K.E. Mooney, J.A. Nelson, M.J. Wagner, Chem. Mater. 16, 3155–3161 (2004)

    Google Scholar 

  48. M. Veverka, P. Veverka, O. Kaman et al., Nanotechnology 18, 3457041–3457047 (2007)

    Google Scholar 

  49. L.B. Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst et al., J. Magn. Magn. Mater. 320, 3242–3250 (2008)

    ADS  Google Scholar 

  50. X. Meng, H. Li, J. Chen, L. Mei, K. Wang, X. Li, J. Magn. Magn. Mater. 321, 1155–1158 (2009)

    ADS  Google Scholar 

  51. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, J. Low Temp. Phys. 149, 185–199 (2007)

    ADS  Google Scholar 

  52. A. Franco Jr., V. Zapf, J. Magn. Magn. Mater. 320, 709 (2008)

    ADS  Google Scholar 

  53. L. Kumar, M. Kar, J. Magn. Magn. Mater. 323, 2042 (2011)

    ADS  Google Scholar 

  54. C.R. Vestal, Z.J. Zhang, Nano Lett. 3, 1739–1743 (2003)

    ADS  Google Scholar 

  55. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, JETP 111, 209–214 (2010)

    ADS  Google Scholar 

  56. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, JETP 113, 819–825 (2011)

    ADS  Google Scholar 

  57. I.D. Mayergoyz, Mathematical Models of Hysteresis (Springer, New York, 1991)

    MATH  Google Scholar 

  58. G. Bertotti, Hysteresis in Magnetism for Physicists (Material Scientist and Engineers. Academic, San Diego, 1998)

    Google Scholar 

  59. A.P. Roberts, C.R. Pike, K.L. Verosub, J. Geophys. Res. 105, 28461 (2000)

    ADS  Google Scholar 

  60. R.J. Harrison, Geochem. Geophys. Geosyst 9, Q05016 (2008)

    ADS  Google Scholar 

  61. R. Day, M. Fuller, V.A. Schmidt, Phys. Earth Planet. Inter. 13, 260–267 (1977)

    ADS  Google Scholar 

  62. B. Tiwari, R.N.P. Choudhary, Sol. Stat. Sci. 11, 219 (2009)

    ADS  Google Scholar 

  63. G.H. Jonker, J. Phys. Chem. Solids 9, 165–175 (1959)

    ADS  Google Scholar 

  64. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)

    ADS  Google Scholar 

  65. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)

    Google Scholar 

  66. C.G. Koops, Phys. Rev. 83, 121 (1951)

    ADS  Google Scholar 

  67. C. Murugesan, G. Chandrasekaran, RSC Adv. 5, 73714–73725 (2015)

    Google Scholar 

  68. M.K. Shobana, W. Nam, H. Choe, J. Nanosci. Nano technol 13, 3535–3538 (2013)

    Google Scholar 

  69. S. Charalampos, J. Magn. Magn. Mater. 426, 629–635 (2017)

    Google Scholar 

  70. X. Ren, G. Xu, J. Magn. Magn. Mater. 354, 44–48 (2014)

    ADS  Google Scholar 

  71. N. Chen, M. Gu, Open J. Met. 2, 37–41 (2012)

    Google Scholar 

  72. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, J. Magn. Magn. Mater. 462, 127–135 (2018)

    ADS  Google Scholar 

  73. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloys Compd. 754, 247–256 (2018)

    Google Scholar 

  74. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Ceram. Int. 44, 13520–13529 (2018)

    Google Scholar 

  75. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 115028 (2009)

    ADS  Google Scholar 

  76. N. Rezlescu, E. Rezlescu, Phys. Stat. Sol. (a) 23, 575 (1974)

    ADS  Google Scholar 

  77. K. Verma, A. Kumar, D. Varshney, J. Alloys Compd. 526, 91 (2012)

    Google Scholar 

  78. I.H. Gul, A. Maqsood, J. Alloys Compd. 465, 227 (2008)

    Google Scholar 

  79. H. Gul, A. Maqsood, M. Naeem, M.N. Ashiq, J. Alloys Compd. 507, 201 (2010)

    Google Scholar 

  80. M.T. Rahman, C.V. Ramana, J. Appl. Phys. 116, 164108 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors Rubiya Samad highly acknowledges Department of Science and Technology, Government of India for financial support vide reference no. SR/WOS-A/PM-1006/2015 under Women Scientist Scheme to carry out this work. The authors are thankful to the authorities of the University of Kashmir for providing the vibrating sample magnetometer facility (MicroSense EZ9 VSM) to the Department of Physics under DST Govt. of India special package for sophisticated instrumentation. Authors would also like to thank Prof. Avinash V. Mahajan from IIT Bombay and Dr. Aga Shahee Rizvi for XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basharat Want.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samad, R., Rather, M.u.D., Asokan, K. et al. Dielectric and magnetic properties of rare-earth-doped cobalt ferrites and their first-order reversal curve analysis. Appl. Phys. A 125, 503 (2019). https://doi.org/10.1007/s00339-019-2804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2804-5

Navigation