Advertisement

Applied Physics A

, 125:494 | Cite as

Nickel-based materials electrodeposited from a deep eutectic solvent on steel for energy storage devices

  • Abdulcabbar YavuzEmail author
  • Naime Ozdemir
  • Perihan Yilmaz Erdogan
  • Huseyin Zengin
  • Gulay Zengin
  • Metin Bedir
Article
  • 119 Downloads

Abstract

Nickel film composed of agglomerated nanoparticles was electrodeposited cathodically on stainless steel current collectors from choline chloride and urea-based deep eutectic solvent for charge storage electrodes. The electrochemically modified electrodes were investigated at positive potential regions in alkaline solution. Nickel-based electrode cycled in KOH was NiOOH in the oxidized form and Ni(OH)2 in the reduced form. Compositional, structural and morphological studies of the electrodes were characterized by means of FTIR, XRD and SEM, respectively. The porous NiOOH/Ni(OH)2 electrode with KOH electrolyte can provide a high electrode/electrolyte interface for fast charge transfer reactions. The charge storage mechanism was the mixed surface-controlled and diffusional-controlled processes. The as-prepared binder-free nickel-based electrode illustrates a high specific capacity of 986 F g−1 at 5 mV s−1. The cycling stability test gave 86% of initial capacity retained after 550 cycles. The use of deep eutectic solvent for the growth of nickel-based nanoparticles presented herein may offer promising potential in electrodeposition for the preparation of high-performance supercapacitors.

Graphic abstract

Notes

Acknowledgements

NO and PYE thank to the Council of Higher Education for the 100/2000 CoHE Doctoral Scholarship Program. We also thank Ramazan Koç, for the charge/discharge experiment.

Supplementary material

339_2019_2787_MOESM1_ESM.docx (513 kb)
Supplementary material 1 (DOCX 513 kb)

References

  1. 1.
    E. Azwar, W.A. Wan Mahari, J.H. Chuah et al., Transformation of biomass into carbon nanofiber for supercapacitor application—a review. Int. J. Hydrog. Energy (2018).  https://doi.org/10.1016/j.ijhydene.2018.09.111 CrossRefGoogle Scholar
  2. 2.
    X. Sun, Q. Li, Y. Mao, Understanding the influence of polypyrrole coating over V2O5 nano fibers on electrochemical properties. Electrochim. Acta 174, 563–573 (2015).  https://doi.org/10.1016/j.electacta.2015.06.026 CrossRefGoogle Scholar
  3. 3.
    M.C. Argyrou, P. Christodoulides, S.A. Kalogirou, Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94, 804–821 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Yu, N. Yang, H. Zhuang et al., Battery-like supercapacitors from diamond networks and water-soluble redox electrolytes. J. Mater. Chem. A Mater. Energy Sustain. 5, 1778–1785 (2017).  https://doi.org/10.1039/C6TA08607A CrossRefGoogle Scholar
  5. 5.
    P.Y. Chan, S.R. Majid, RGO-wrapped MnO2 composite electrode for supercapacitor application. Solid State Ion. 262, 226–229 (2014)CrossRefGoogle Scholar
  6. 6.
    D.-Q. Liu, S.-H. Yu, S.-W. Son, S.-K. Joo, Electrochemical performance of iridium oxide thin film for supercapacitor prepared by radio frequency magnetron sputtering method. ECS Trans. 16, 103–109 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Xu, L. Gao, J. Cao et al., Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 56, 732–736 (2010)CrossRefGoogle Scholar
  8. 8.
    R.S. Mane, J. Chang, D. Ham et al., Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodes. Curr. Appl. Phys. 9, 87–91 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5, 6872–6879 (2012)CrossRefGoogle Scholar
  10. 10.
    D.P. Dubal, D.S. Dhawale, R.R. Salunkhe et al., Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J. Alloy. Compd. 492, 26–30 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Yoon, E. Kang, J.K. Kim et al., Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem. Commun. 47, 1021–1023 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Rajeswari, P.S. Kishore, B. Viswanathan, T.K. Varadarajan, One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 11, 572–575 (2009)CrossRefGoogle Scholar
  13. 13.
    Z. Algharaibeh, X. Liu, P.G. Pickup, An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor. J. Power Sources 187, 640–643 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Guan, J. Liu, Y. Wang et al., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9, 5198–5207 (2015)CrossRefGoogle Scholar
  16. 16.
    D.-W. Wang, F. Li, H.-M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources 185, 1563–1568 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloy. Compd. 734, 89–111 (2018).  https://doi.org/10.1016/j.jallcom.2017.10.262 CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, H. Feng, X. Wu et al., Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energy 34, 4889–4899 (2009).  https://doi.org/10.1016/j.ijhydene.2009.04.005 CrossRefGoogle Scholar
  19. 19.
    M. Aghazadeh, A. Rashidi, M.R. Ganjali, M.G. Maragheh, Nickel oxide nano-rods/plates as a high performance electrode materials for supercapacitors; electrosynthesis and evolution of charge storage ability. Int. J. Electrochem. Sci. 11, 11002–11015 (2016)CrossRefGoogle Scholar
  20. 20.
    A.A. Yadav, U.J. Chavan, Electrochemical supercapacitive performance of spray-deposited NiO electrodes. J. Electron. Mater. 47, 3770–3778 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    X. Wang, Y. Wang, C. Zhao et al., Electrodeposited Ni (OH)2 nanoflakes on graphite nanosheets prepared by plasma-enhanced chemical vapor deposition for supercapacitor electrode. New J. Chem. 36, 1902–1906 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Li, S. Li, F. Huang et al., Hydrothermally formed three-dimensional hexagon-like P doped Ni (OH) 2 rod arrays for high performance all-solid-state asymmetric supercapacitors. Appl. Surf. Sci. 428, 250–257 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    H. Liu, J. Xu, G. Liu et al., Building an interpenetrating network of Ni (OH) 2/reduced graphene oxide composite by a sol–gel method. J. Mater. Sci. 53, 15118–15129 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    H. Wu, Y. Li, J. Ren et al., CNT-assembled dodecahedra core@ nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 55, 82–92 (2019)CrossRefGoogle Scholar
  25. 25.
    S. Wang, R.A.W. Dryfe, Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors. J. Mater. Chem. A 1, 5279–5283 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Blomquist, T. Wells, B. Andres et al., Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials. Sci. Rep. 7, 39836 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    K.R. Prasad, N. Munichandraiah, Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes. J. Power Sources 112, 443–451 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    M. Danczuk, C.V. Nunes, K. Araki, F.J. Anaissi, Influence of alkaline cation on the electrochemical behavior of stabilized alpha-Ni (OH) 2. J. Solid State Electrochem. 18, 2279–2287 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Wei, C. Yang, J. Lu et al., The mechanism of NOx emissions from binary molten nitrate salts contacting nickel base alloy in thermal energy storage process. Appl. Energy 207, 265–273 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Yang, X. Wei, J. Ding, J. Yang, Effect of nickel base alloy on NOx emissions from binary molten nitrate salts in thermal energy storage process. Energy Procedia 105, 4003–4008 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Zein El Abedin, F. Endres, Ionic liquids: the link to high-temperature molten salts? Acc. Chem. Res. 40, 1106–1113 (2007)CrossRefGoogle Scholar
  32. 32.
    J.C. Araque, J.J. Hettige, C.J. Margulis, Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J. Phys. Chem. B 119, 12727–12740 (2015)CrossRefGoogle Scholar
  33. 33.
    X.-X. Li, L.-S. Zhang, C. Wang et al., Green synthesis of monolithic column incorporated with graphene oxide using room temperature ionic liquid and eutectic solvents for capillary electrochromatography. Talanta 178, 763–771 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Lahiri, N. Borisenko, M. Olschewski et al., Anomalous electroless deposition of less noble metals on Cu in ionic liquids and its application towards battery electrodes. Faraday Discuss. 206, 339–351 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    X. Cao, L. Xu, Y. Shi et al., Electrochemical behavior and electrodeposition of cobalt from choline chloride-urea deep eutectic solvent. Electrochim. Acta 295, 550–557 (2019)CrossRefGoogle Scholar
  36. 36.
    M. Kar, O. Tutusaus, D.R. MacFarlane, R Mohtadi, Novel and versatile room temperature ionic liquids for energy storage. Energy Environ. Sci. (2019)Google Scholar
  37. 37.
    E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014)CrossRefGoogle Scholar
  38. 38.
    O.G. Rojas, T. Nakayama, S.R. Hall Green and cost-effective synthesis of the superconductor BSCCO (Bi-2212), using a natural deep eutectic solvent. Ceram. Int. (2019)Google Scholar
  39. 39.
    K.I.M. da Silva, F. Bernardi, G. Abarca et al., Tuning the structure and magnetic behavior of Ni–Ir-based nanoparticles in ionic liquids. Phys. Chem. Chem. Phys. 20, 10247–10257 (2018)CrossRefGoogle Scholar
  40. 40.
    A.P. Abbot, G. Capper, D.L. Davies, et al, Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chem. Commun. 70–71. (2003)  https://doi.org/10.1039/b210714g. Accessed 2 May 2019
  41. 41.
    M. Srivastava, G. Yoganandan, V.K. William Grips, Electrodeposition of Ni and Co coatings from ionic liquid. Surf. Eng. 28, 424–429 (2012)CrossRefGoogle Scholar
  42. 42.
    A.A. Kityk, D.A. Shaiderov, E.A. Vasil’eva et al., Choline chloride based ionic liquids containing nickel chloride: physicochemical properties and kinetics of Ni(II) electroreduction. Electrochim. Acta 245, 133–145 (2017).  https://doi.org/10.1016/j.electacta.2017.05.144 CrossRefGoogle Scholar
  43. 43.
    S. Wang, X. Zou, Y. Lu et al., Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy (2018).  https://doi.org/10.1016/j.ijhydene.2018.06.188 CrossRefGoogle Scholar
  44. 44.
    W. Ruythooren, K. Attenborough, S. Beerten et al., Electrodeposition for the synthesis of microsystems. J. Micromech. Microeng. 10, 101 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    K.E. Hnida, M. Marzec, E. Wlaźlak et al., Influence of pulse frequency on physicochemical properties of InSb films obtained via electrodeposition. Electrochim. Acta 304, 396–404 (2019)CrossRefGoogle Scholar
  46. 46.
    S.T. Navale, V.V. Mali, S.A. Pawar et al., Electrochemical supercapacitor development based on electrodeposited nickel oxide film. RSC Adv. 5, 51961–51965 (2015)CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, Y. Liu, Y. Guo et al., In situ preparation of flower-like α-Ni (OH)2 and NiO from nickel formate with excellent capacitive properties as electrode materials for supercapacitors. Mater. Chem. Phys. 151, 160–166 (2015)CrossRefGoogle Scholar
  48. 48.
    Y. Li, C. He, E.V. Timofeeva et al., β-Nickel hydroxide cathode material for nano-suspension redox flow batteries. Front. Energy 11, 401–409 (2017).  https://doi.org/10.1007/s11708-017-0496-0 CrossRefGoogle Scholar
  49. 49.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc. R Soc. A Math. Phys. Eng. Sci. 471, 5–9 (2015).  https://doi.org/10.1098/rspa.2014.0792 CrossRefGoogle Scholar
  50. 50.
    A.N.S.B.A. Metosen, S.C. Pang, S.F. Chin, Nanostructured multilayer composite films of manganese dioxide/nickel/copper sulfide deposited on polyethylene terephthalate supporting substrate. J. Nanomater. 16, 131 (2015)Google Scholar
  51. 51.
    A.P. Abbott, A. Ballantyne, R.C. Harris et al., A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim. Acta 176, 718–726 (2015)CrossRefGoogle Scholar
  52. 52.
    X. Ge, C.D. Gu, Y. Lu et al., A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid. J. Mater. Chem. A 1, 13454–13461 (2013)CrossRefGoogle Scholar
  53. 53.
    P. Sirisinudomkit, P. Iamprasertkun, A. Krittayavathananon et al., Hybrid Energy Storage of Ni (OH)2-coated N-doped Graphene Aerogel//N-doped Graphene Aerogel for the Replacement of NiCd and NiMH Batteries. Sci. Rep. 7, 1124 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai et al., Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application. Electrochim. Acta 265, 514–522 (2018)CrossRefGoogle Scholar
  55. 55.
    K.R. Prasad, N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun. 6, 1000–1004 (2004)Google Scholar
  56. 56.
    W. Plieth, Electrochemistry for materials science (Waldfried Plieth) (Elsevier, Oxford, 2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, Faculty of EngineeringGaziantep UniversityGaziantepTurkey
  2. 2.Department of Chemistry, Faculty of Science and LiteratureGaziantep UniversityGaziantepTurkey
  3. 3.Department of Engineering Physics, Faculty of EngineeringGaziantep UniversityGaziantepTurkey

Personalised recommendations