Skip to main content
Log in

Performance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the effect of active layer doping and the In concentration (y) of InyGa1–yAs-based asymmetric QWIP are studied. A theoretical model is developed for the study by including the effect of strain due to lattice mismatch between GaAs and InGaAs stepped QW and also including the effect of doping on Hartree potential. High absorption and, hence, enhanced responsivity is obtained by incorporating Indium. However, absorption coefficient decreases with the increasing In concentration (y). However, the performance of the asymmetric QWIP is still better than its symmetric QWIP. Moreover, dark current also reduces in asymmetric QWIP as compared to symmetric QWIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Szweda, QWIPs–multi-spectral mine clearance and medical. III-Vs Rev. 18, 44 (2005)

    Google Scholar 

  2. S.D. Gunapala, S.V. Bandara, J.K. Liu, E.M. Luong, N. Stetson, C.A. Shott, J.J. Bock, S.B. Rafol, J.M. Mumolo, M.J. McKelvey, Long-wavelength 256 x256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera. IEEE Trans. Electron. Dev. 47(2), 326–332 (2000)

    Article  ADS  Google Scholar 

  3. J. Moon, S.S. Li, J.H. Lee, A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection. Infrared Phys. Tech. 44, 229–234 (2003)

    Article  ADS  Google Scholar 

  4. N. Zeiri, S. Abdi-Ben Nasrallah, N. Sfina, M. Said, Intersubband transitions in quantum well mid-infrared photodetectors. Infrared Phys. Technol. 64, 33–39 (2014)

    Article  ADS  Google Scholar 

  5. V. Guériaux, A. Nedelcu, P. Bois, Double barrier strained quantum well infrared photodetectors for the 3-5 µm atmospheric window. J. Appl. Phys. 105, 114515 (2009)

    Article  ADS  Google Scholar 

  6. A. Rajira, H. Akabli, A. Almaggousi, A. Abounadi, The non parabolicity and the enhancement of the intersubband absorption in GaAs/GaAlAs quantum wells. Superlattices Microstruct. 84, 192–197 (2015)

    Article  ADS  Google Scholar 

  7. N. Imam, E.N. Glytsis, T.K. Gaylord et al., Quantum-well infrared photodetector structure synthesis: methodology and experimental verification. J. Quantum Elec. 39, 468 (2003)

    Article  ADS  Google Scholar 

  8. J. Li, K.K. Choi, J.F. Klem, J.L. Reno, D.C. Tsui, High gain, broadband InGaAs/InGaAsP quantum well infrared photodetector. Appl. Phys. Lett. 89, 081128 (2006)

    Article  ADS  Google Scholar 

  9. F.D.P. Alves, J. Amorim, M. Byloos, H.C. Liu, A. Bezinger, M. Buchanan, N. Hanson, G. Karunasiri, Three band Quantum well infrared photodetector using interband and intersubband transitions. J. Appl. Phys. 103, 114515 (2008)

    Article  ADS  Google Scholar 

  10. Mehjabeen A. Khan, Akeed A. Pavel, Naz Islam, Intersubband transition in asymmetric quantum well infrared photodetector. IEEE Trans. Nanotech. 12(4), 521–523 (2013)

    Article  ADS  Google Scholar 

  11. A. Billaha, M.K. Das, Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto-Electron. Rev. 24(1), 25–33 (2016)

    Article  ADS  Google Scholar 

  12. Y. Yang, H.C. Liu, W.Z. Shen, N. Li, W. Lu, Z.R. Wasilewski, M. Buchanan, Optimal doping density for quantum well infrared photodetector performance. J. Quantum Electr. 45(6), 623–628 (2009)

    Article  ADS  Google Scholar 

  13. C.W. Cheah, G. Karunasiri, L.S. Tan, Analysis of AlGaAs/GaAs/InGaAs n-type step multiple quantum wells for the optimization of normal incident absorption. Semicond. Sci. Technol. 17(9), 1028–1037 (2002)

    Article  ADS  Google Scholar 

  14. B.F. Levine, A. Zussmann, S.D. Gunapala, M.T. Asom, J.M. Kuo, W.S. Hobson, Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors. J. Appl. Phys. 72, 4429–4443 (1992)

    Article  ADS  Google Scholar 

  15. E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, J. Nagle, Emission and capture of electrons in multiquantum-well structures. IEEE Trans. Quantum Electr. 30, 2875 (1994)

    Article  ADS  Google Scholar 

  16. L. Jedral, C. Edirisinghe, H. Ruda, A. Moore, B. Lent, Optical characterization of AlInGaAs/InGaAs quantum well structures on InGaAs substrates. J. Appl. Phys. 82, 375–379 (1997)

    Article  ADS  Google Scholar 

  17. I. Vurguftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  ADS  Google Scholar 

  18. Y. Hirayama, W.-Y. Choi, L.H. Peng, C.G. Fonstad, Absorption spectroscopy on room temperature excitonic transitions in strained layer InGaAs/InGaAlAs multiquantum-well strcutures. J. Appl. Phys. 74(1), 570–578 (1993)

    Article  ADS  Google Scholar 

  19. C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39(3), 1871–1883 (1989)

    Article  ADS  Google Scholar 

  20. I.S. Vasil’evskii, G.B. Galiev, E.A. Klimov, K. Požela, J. Požela, V. Jucienė, A. Sužiedėlis, N. Žurauskienė, S. Keršulis, V. Stankevič, Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures. Semiconductors 45(9), 1169–1172 (2011)

    Article  ADS  Google Scholar 

  21. H. Schneider, H.C. Liu, Quantum well infrared photodetectors physics and applications (Springer-Verlag, New York, 2007)

    Google Scholar 

  22. R. Quay, C. Moglestue, V. Palankovski et al., A temperature dependent model for the saturation velocity in semiconductor materials. Mater. Sci. Semicond. Proc. 3, 149–155 (2000)

    Article  Google Scholar 

  23. S.D. Gunapala, B.F. Levine, L. Pfeiffer, K. West, Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias. J. Appl. Phys. 69, 6517 (1991)

    Article  ADS  Google Scholar 

  24. K.L. Tsai, K.H. Chang, C.P. Lee, K.F. Huang, J.S. Tsang, H.R. Chen, Two-color infrared photodetector using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells. Appl. Phys. Lett. 62, 3504 (1993)

    Article  ADS  Google Scholar 

  25. C. JungChi, S.L. Sheng, M.Z. Tidrow, P. Ho, M. Tsai, C.P. Lee, A voltage-tunable multicolor triple-coupled InGaAs/GaAs/AlGaAs quantum-well infrared photodetector for 8-12 µm detection. Appl. Phys. Lett. 69, 2412 (1996)

    Article  ADS  Google Scholar 

  26. S.R. Andrews, B.A. Miller, Experimental and theoretical studies of the performance of quantum-well infrared photodetectors. J. Appl. Phys. 70, 993 (1991)

    Article  ADS  Google Scholar 

  27. E. Pelve, F. Beltram, C.G. Bethea, B.F. Levine, V.O. Shen, S.J. Hsieh, R.R. Abbott, Analysis of the dark current in doped-well multiple quantum well AlGaAs infrared photodetector. J. Appl. Phys. 66, 5656 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Centre of Excellence in Renewable Energy, project under FAST, MHRD, Govt. of India (F. No. 5-6/2013-TS-VII) at Indian Institute of Technology (Indian School of Mines), Dhanbad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aref Billaha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billaha, M.A., Das, M.K. Performance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP. Appl. Phys. A 125, 457 (2019). https://doi.org/10.1007/s00339-019-2750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2750-2

Navigation