Skip to main content
Log in

Multi-photon Raman scattering and yellow–green-light emission from feather-like Cd1–xZnxS nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cd1–xZnxS (x ~ 0.5) alloy was synthesized on a silicon substrate by chemical vapor deposition in a horizontal tube furnace. Traditional analytical techniques such as scanning electron microscopy (SEM), transmission electron microscope, and Raman and photoluminescence (PL) spectroscopy were employed to characterize the samples. SEM analysis indicates that the branched nanorods are neatly perpendicular to the trunk and constitute a feather-like structure. Raman spectroscopy shows that the LO phonon modes of the feather-like Cd0.5Zn0.5S structures are blue-shifted about 3 cm−1 with respect to pure CdS. PL properties of the samples show that the feather-like Cd0.5Zn0.5S structures have an asymmetric broad emission peak at 490–570 nm. However, the pure CdS has only one narrow emission peak at 510 nm. The Gauss fitting curves show that the broad emission peak at 490–570 nm can be fitted to four peaks at 465, 519, and 543 nm, respectively. The blue-light emission peak at 465 nm is considered to be the near-band-edge emission of feather-like Cd0.5Zn0.5S structures. Furthermore, the luminescence mechanisms of peaks 519 and 543 nm are discussed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Ma, X. Ai, X. Wu, Effect of substrate and Zn doping on the structural, optical and electrical properties of CdS thin films prepared by CBD method. J. Alloys Compd. 691, 399–406 (2017)

    Article  Google Scholar 

  2. S. Azizi, H.R. Dizaji, M.H. Ehsani, Structural and optical properties of Cd1–xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes. Optik 127, 7104–7114 (2016)

    Article  ADS  Google Scholar 

  3. K.C. Wilson, M.B. Ahamed, Surface modification of cadmium sulfide thin film honey comb nanostructures: effect of in situ tin doping using chemical bath deposition. Appl. Surf. Sci. 361, 277–282 (2016)

    Article  ADS  Google Scholar 

  4. A. Mukherjee, P. Ghosh, A.A. Aboud, P. Mitra, Influence of copper incorporation in CdS: structural and morphological studies. Mater. Chem. Phys. 184, 101–109 (2016)

    Article  Google Scholar 

  5. Z.X. Yang, P. Zhang, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Design, growth, and characterization of morphology-tunable CdxZn1–xS nanostructures generated by a one-step thermal evaporation process. CrystEngComm 14, 4298–4305 (2012)

    Article  Google Scholar 

  6. A.A. Ziabari, F.E. Ghodsi, Effects of the Cd:Zn:S molar ratio and heat treatment on the optical and photoluminescence properties of nanocrystalline CdZnS thin films. Mater. Sci Semicond. Process. 16, 1629–1636 (2013)

    Article  Google Scholar 

  7. M.A. Mahdi, Z. Hassan, J.J. Hassan, S.S. Ng, S.J. Kasim, Preparation and characterization of ZnxCd1–xS ternary alloys micro/nanostructures grown by thermal evaporation. Mater. Res. Express 2, 016501 (2014)

    Article  ADS  Google Scholar 

  8. A. Mukherjee, M. Fu, P. Mitra, Influence of Zn incorporation in CdS: structural and morphological studies. J. Phys. Chem. Solids 82, 50–55 (2015)

    Article  ADS  Google Scholar 

  9. A.T. Nguyen, W.H. Lin, Y.H. Lu, Y.D. Chiou, Y.J. Hsu, First demonstration of rainbow photocatalysts using ternary Cd1–xZnxSe nanorods of varying compositions. Appl. Catal. A: Gen. 476, 140–147 (2014)

    Article  Google Scholar 

  10. Y.C. Pu, Y.J. Hsu, Multicolored Cd1–xZnxSe quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes. Nanoscale 6, 3881–3888 (2014)

    Article  ADS  Google Scholar 

  11. Y.L. Min, J.C. Fan, Q.J. Xu, S.Y. Zhang, High visible-photoactivity of spherical Cd0.5Zn0.5S coupled with graphene composite for decolorizating organic dyes. J. Alloys Compd. 609, 46–53 (2014)

    Article  Google Scholar 

  12. H. Yao, H. Shen, X. Zhu, J. Jiao, J. Li, W. Wang, Influence of Cd source concentration on photo-current response property of CdxZn1–xS film prepared by chemical bath deposition. Ceram. Int. 42, 2466–2471 (2016)

    Article  Google Scholar 

  13. U. Verma, V. Thakur, P. Rajaram, A.K. Shrivastava, Structural, morphological and optical properties of sprayed nanocrystalline thin films of Cd1–xZnxS solid solution. Electron. Mater. Lett. 11, 46–54 (2015)

    Article  ADS  Google Scholar 

  14. Y.J. Hsu, S.Y. Lu, Y.F. Lin, One-step preparation of coaxial CdS-ZnS and Cd1–xZnxS-ZnS nanowires. Adv. Funct. Mater. 15, 1350–1357 (2005)

    Article  Google Scholar 

  15. Y.F. Lin, Y.J. Hsu, S.Y. Lu, K.T. Chen, T.Y. Tseng, Well-aligned ternary Cd1–xZnxS nanowire arrays and their composition-dependent field emission properties. J. Phys. Chem. C 111, 13418–13426 (2007)

    Article  Google Scholar 

  16. X. Yang, Z. Wang, X. Lv, Y. Wang, H. Jia, Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis. J. Photochem. Photobiol. A 329, 175–181 (2016)

    Article  Google Scholar 

  17. G.L. Song, S. Guo, X.X. Wang, Z.S. Li, B.S. Zou, H.M. Fan, R.B. Liu, Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure. New J. Phys. 17, 063024 (2015)

    Article  ADS  Google Scholar 

  18. G. Murali, D.A. Reddy, G. Giribabu, R.P. Vijayalakshmi, R. Venugopal, Room temperature ferromagnetism in Mn doped CdS nanowires. J. Alloy. Compd. 581, 849–855 (2013)

    Article  Google Scholar 

  19. J.R. Jayaramaiah, R. Shamanth, V. Jayanth, K.S. Shamala, Optical investigation on zinc doped cadmium sulphide nanocrystalline thin films. Curr. Appl. Phys. 16, 799–804 (2016)

    Article  ADS  Google Scholar 

  20. C. Hu, X. Zeng, J. Cui, H. Chen, J. Lu, Size effects of Raman and photoluminescence spectra of CdS nanobelts. J. Phys. Chem. C 117, 20998–21005 (2013)

    Article  Google Scholar 

  21. R. Sethi, L. Kumar, P.K. Sharma, A.C. Pandey, Tunable visible emission of Ag-doped CdZnS alloy quantum dots. Nanoscale Res. Lett. 5, 96–102 (2010)

    Article  ADS  Google Scholar 

  22. A.E. Saunders, I. Popov, U. Banin, Synthesis of hybrid CdS–Au colloidal nanostructures. J. Phys. Chem. B 110, 25421–25429 (2006)

    Article  Google Scholar 

  23. S. Muruganandam, G. Anbalagan, G. Murugadoss, Synthesis and structural, optical and thermal properties of CdS:Zn2+ nanoparticles. Appl. Nanosci. 4, 1013–1019 (2014)

    Article  ADS  Google Scholar 

  24. P. Yang, M.K. Lü, C.F. Song, D. Xu, D.R. Yuan, X.F. Cheng, G.J. Zhou, Luminescence of Cu2+ and In3+ co-activated ZnS nanoparticles. Opt. Mater. 20, 141–145 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61601397, No. 61805209, and No. 60277023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, J. Multi-photon Raman scattering and yellow–green-light emission from feather-like Cd1–xZnxS nanostructures. Appl. Phys. A 125, 454 (2019). https://doi.org/10.1007/s00339-019-2746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2746-y

Navigation