Preparation and characterization of gallium-doped zinc oxide/polystyrene nanocomposite scintillator for alpha particles detection

Abstract

In this study, zinc oxide (ZnO) and gallium-doped zinc oxide (GZO)/polystyrene nanocomposite films were successfully prepared. Highly luminescent powders were synthesized by a simple sol–gel method. XRD, EDX, FTIR analysis techniques, and Raman spectroscopy confirmed that ZnO and GZO nanopowders were successfully prepared. Photoluminescence and ionoluminescence studies of the synthesized powders showed that they have a brilliant blue emission at room temperature. Incorporation of GZO nanoparticles in a polystyrene (PS) matrix resulted in the formation of nanocomposite with stable and strong blue emission. According to the TEM images, the mean size of particles was estimated about 35 and 42 nm for ZnO and GZO nanopowders, respectively. The radiation response of samples was measured using 241Am alpha source. The counting rate in doped sample was improved significantly compared with ZnO composite. GZO composite showed acceptable counting efficiency which is comparable with the other expensive alpha counters. Investigations revealed that GZO/polystyrene nanocomposite can be a valuable scintillation material for the radiation detection applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. Rincón-López, D.A. Fernández-Benavides, A.L. Giraldo-Betancur et al., Bi4Si3O12 thin films for scintillator applications. Appl. Phys. A 122, 429 (2016)

    ADS  Article  Google Scholar 

  2. 2.

    G. Hull, F. Camera, G. Colombi, M. Josselin, B. Million, N. Blasi, Detection properties and internal activity of newly developed La-containing scintillator crystals. Nucl. Inst. Methods Phys. Res. A. 925, 70–77 (2019)

    ADS  Article  Google Scholar 

  3. 3.

    Y. Yong Ji, H.S. Chang, T. Lim, W. Lee, Application of a SrI2(Eu) scintillation detector to in situ gamma-ray spectrometry in the environment. Radiat. Meas. 122, 67–72 (2019)

    Article  Google Scholar 

  4. 4.

    M. Loyd, A. Lindsey, Y. Wu, L. Stand, M. Folsom, D. Rutstrom, M. Koschan, C.L. Melcher, M. Zhuravleva, Growth of large size (≥ 38 mm diameter) KCaI3: Eu scintillator crystals. Nucl. Inst. Methods Phys. Res. A.  914, 8–14 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    A.N. Mabe, J.D. Auxier, M.J. Urffer, S.A. Young, D. Penumadu, G.K. Schweitzer, L.F. Miller, Thin film polymer composite scintillators for thermal neutron detection. J. Compos. 2013, 539060 (2013). https://doi.org/10.1155/2013/539060

    Article  Google Scholar 

  6. 6.

    A. Quaranta, S.M. Carturan, T. Marchi et al., Optical and scintillation properties of polydimethyl-diphenylsiloxane based organic scintillators. IEEE Trans. Nucl. Sci. 57, 891–900 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    R.K. Swank, W.L. Buck, The scintillation process in plastic solid solutions. Phys. Rev. 91, 927–933 (1953)

    ADS  Article  Google Scholar 

  8. 8.

    W.S. Koski, Scintillations in some phosphor-plastic systems. Phys. Rev. 82, 230–232 (1950)

    ADS  Article  Google Scholar 

  9. 9.

    T. Yanagida, Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 94(2), 75–97 (2018)

    Article  Google Scholar 

  10. 10.

    B. El Filali, J.J. Gomez, T.V. Torchynska, J.C. Espinola, L. Shcherbyna, Band-edge emission, defects, morphology and structure of in-doped ZnO nanocrystal films. Opt. Mater. 89, 322–328 (2019)

    ADS  Article  Google Scholar 

  11. 11.

    R.M. Turtos, S. Gundacker, M.T. Lucchini, L. Procházkova, V. Cuba, H. Buresova, J. Mrazek, M. Nikl, P. Lecoq, E. Auffray, Timing performance of ZnO: Ga nanopowder composite scintillators. Phys. Status Solidi RRL 56, 1–5 (2016)

    Google Scholar 

  12. 12.

    P.J. Simpsona, R. Tjossema, A.W. Hunta, K.G. Lynna, V. Munné, Superfast timing performance from ZnO scintillators. Nucl. Instrum. Methods Phys. Res. A. 505, 82–84 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    E.A. McKigney, R.E. Del Sesto, L.G. Jacobsohn, P.A. Santi, R.E. Muenchausen, K.C. Ott, T.M. McCleskey, B.L. Bennett, J.F. Smith, D.W. Cooke, Nanocomposite scintillators for radiation detection and nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. A. 579, 15–18 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    H. Burešová, L. Procházková, R.M. Turtos, V. Jarý, E. Mihóková, A. Beitlerová, R. Pjatkan, S. Gundacker, E. Auffray, P. Lecoq, M. Nikl, Preparation and luminescence properties of ZnO: Ga–polystyrene composite scintillator. Opt. Express 24(14), 15289–15298 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    A.N. Jassim, R.M. Alwan, Q.A. Kadhim, A.A. Nsaif, Preparation and characterization of ZnO/polystyrene nanocomposite films using ultrasound irradiation. J. Nanosci. Nanotechnol. 6, 17–23 (2016)

    Google Scholar 

  16. 16.

    D.W. Chae, B.C. Kim, Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 16, 846–850 (2005)

    Article  Google Scholar 

  17. 17.

    E.J. Tang, H. Liu, L.M. Sun, E.L. Zheng, G.X. Cheng, Fabrication of zinc oxide/poly(styrene) grafted nanocomposite latex and its dispersion. Eur. Polym. J. 43, 4210–4218 (2007)

    Article  Google Scholar 

  18. 18.

    Y. Tu, L. Zhou, Y.Z. Jin, C. Gao, Z.Z. Ye, Y.F. Yang, Q.L. Wang, Transparent and flexible thin films of ZnO–polystyrene nanocomposite for UV-shielding applications. J. Mater. Chem. 20, 1594–1599 (2010)

    Article  Google Scholar 

  19. 19.

    A. Hooda, M.S. Goyat, R. Gupta, M. Prateek, M. Agrawal, A. Biswas, Synthesis of nano-textured polystyrene/ZnO coatings with excellent transparency and superhydrophobicity. Mater. Chem. Phys. 193, 447–452 (2017)

    Article  Google Scholar 

  20. 20.

    S. Alamdari, A. Karkhaneh, M.J. Tafreshi, M.S. Ghamsari, Ultra-thin Hafnium doped ZnO films with enhanced optical transparency and electrical conductivity. Mater. Res. Express 6(5), 055020 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    M.S. Ghamsari, S. Alamdari, D. Razzaghi, M.A. Pirlar, ZnO nanocrystals with narrow-band blue emission. J. Lumin. 205, 508–518 (2019)

    Article  Google Scholar 

  22. 22.

    S. Alamdari, M.J. Tafreshi, M.S. Ghamsari, Strong yellow–orange emission from aluminum and indium co-doped ZnO nanostructures with potential for increasing the color gamut of displays. Appl. Phys. A 125(3), 165 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    S. Alamdari, M.J. Tafreshi, M.S. Ghamsari, The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Mater. Lett. 197, 94–97 (2017)

    Article  Google Scholar 

  24. 24.

    M.S. Ghamsari, S. Alamdari, W. Han, H.H. Park, Impact of nanostructured thin ZnO film in ultraviolet protection. Int. J. Nanomed. 12, 207 (2017)

    Article  Google Scholar 

  25. 25.

    S. Alamdari, M.S. Ghamsari, M.M. Ara, B. Efafi, Highly concentrated IZO colloidal nanocrystals with blue/orange/red three-colors emission. Mater. Lett. 158, 202–204 (2015)

    Article  Google Scholar 

  26. 26.

    S. Alamdari, M. Sasani Ghamsari, M. Jafar Tafreshi, Synthesis, characterization, and gas sensing properties of In-doped ZnO nanopowders. Nanochem. Res. 2, 198–204 (2017)

    Google Scholar 

  27. 27.

    M. Vafaee, M.S. Ghamsari, Preparation and characterization of ZnO nano-particles by a novel sol–gel route. Mater. Lett. 61, 3265–3268 (2007)

    Article  Google Scholar 

  28. 28.

    S. Alamdari, M. Sasani Ghamsari, M. Jafar Tafreshi, Synthesis, characterization, and gas sensing properties of in-doped ZnO nanopowders. Nanochem. Res. 2(2), 1–7 (2017)

    Google Scholar 

  29. 29.

    S. Alamdari, M.S. Ghamsari, H. Afarideh, A. Mohammadi, S. Geranmayeh, M.J. Tafreshi, M.H. Ehsani, Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt. Mater. 92, 243–250 (2019)

    ADS  Article  Google Scholar 

  30. 30.

    M.C. Jun, S.U. Park, J.H. Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res. Lett. 7, 1–6 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    M.A. Alam, S. Arif, M. Shariq, Enhancement in mechanical properties of polystyrene–ZnO nanocomposites. Int. J. Innov. Res. Adv. Eng. 6, 122–129 (2015)

    Google Scholar 

  32. 32.

    J. Saydi, M. Karimi, M. Mazhdi, J. Seidi, F. Mazhdi, Characterization, and gas sensing properties of pure and Mn-doped ZnO nanocrystalline particles. J. Mater. Eng. Perform. 23, 3489–3496 (2014)

    Article  Google Scholar 

  33. 33.

    S. Moussa, F. Namouchi, H. Guermazi, Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites. Eur. Phys. J. Plus. 130, 152 (2015)

    Article  Google Scholar 

  34. 34.

    M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys. 87, 2445–2448 (2000)

    ADS  Article  Google Scholar 

  35. 35.

    S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 7, 470 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    V.A. Demidenko, E.I. Gorokhova, I.V. Khodyukb, O. Khristich, S.B. Mikhrin, P.A. Rodnyi, Scintillation properties of ceramics based on zinc oxide. Radiat. Meas. 42, 549–552 (2007)

    Article  Google Scholar 

  37. 37.

    K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors. Sensors 10, 8604–8634 (2010)

    Article  Google Scholar 

  38. 38.

    N. Markovic, Z. Siketic, D. Cosic, H.K. Jung, N.H. Lee, W.-T. Han, M. Jakšic, Ion beam induced luminescence (IBIL) system for imaging of radiation induced changes in materials. Nucl. Instrum. Methods Phys. Res. B. 343, 167–172 (2015)

    ADS  Article  Google Scholar 

  39. 39.

    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009)

    ADS  Article  Google Scholar 

  40. 40.

    H. Ziluei, R. Azimirad, M.M. Larijani, F. Ziaie, Preparation and optimization of CdWO4-polymer nano-composite film as an alpha particle counter. Nucl. Instrum. Methods Phys. Res. Sect. A 852, 85–90 (2017)

    ADS  Article  Google Scholar 

  41. 41.

    P.R. Shweikani, A. Ismail, B. Jerby, Preliminary study on the properties of zinc oxide (ZnO) for alpha particles detection. Int. J. Radiat. Res. 15(3), 301–306 (2017)

    Google Scholar 

  42. 42.

    H. von Philipsborn, Large-area low-level gross alpha ZnS scintillation counting. Appl. Radiat. Isot. 67, 797–799 (2009)

    Article  Google Scholar 

  43. 43.

    S.A. McElhaney, J.A. Ramsey, M.L. Bauer, M.M. Chiles, A ruggedized ZnS(Ag)/epoxy alpha scintillation detector. Nucl. Instrum. Methods Phys. Res. Sect. A 299, 111–114 (1990)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support given by Iran National Science Foundation (INSF) and Semnan University. We also gratefully thank Dr. Aghil Mohammadi and Prof. Hosein Afarideh for their help in radiation detection and measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sasani Ghamsari.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alamdari, S., Jafar Tafreshi, M. & Sasani Ghamsari, M. Preparation and characterization of gallium-doped zinc oxide/polystyrene nanocomposite scintillator for alpha particles detection. Appl. Phys. A 125, 450 (2019). https://doi.org/10.1007/s00339-019-2727-1

Download citation