Skip to main content
Log in

Formaldehyde adsorption composite paper with nacre-inspired structure and high mechanical strength properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With the increasing attention of indoor air pollutant, high adsorption performance materials are widely used to deal with formaldehyde. However, the mechanical properties and adsorption efficiency usually limited their applications. In this study, amine-functionalized graphene/fiber composite paper with nacre-inspired structure and high mechanical strength is fabricated through vacuum filtration-induced self-assembly process via a environmentally friendly synthesis route. By the interaction between amine-functional graphene oxide and pine pulp fiber, the formaldehyde adsorption composite paper has been successfully achieved, having high mechanical properties for tensile strength, tear strength and elongation and good adsorption performance. The good physical and adsorption performance of our composite paper provides a new insight into the design and fabrication of advanced photocatalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Breslow, C.W. Chan, G. Dhom et al., Latent carcinoma of prostate at autopsy in seven areas. The International Agency for Research on Cancer, Lyons, France. Int. J. Cancer. 20, 680–688 (2010)

  2. K.D.V. Buan, Particulate matter concentrations at children and adult breathing heights in residential thirdhand smoke environments. Dissertations & Theses-Gradworks (2015)

  3. WHO, Environmental health criteria—formaldehyde, vol. 89 (WHO, Geneva, 1989), pp. 1–219

    Google Scholar 

  4. S. Kim, Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresour. Technol. 100, 744–748 (2009)

    Article  Google Scholar 

  5. S. Halvarsson, H. Edlund, M. Norgren, Properties of medium density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Ind. Crops Prod. 28, 37–46 (2008)

    Article  Google Scholar 

  6. M. Gürü, S. Tekeli, I. Bilici, Manufacturing of urea-formaldehyde-based composite particleboard from almond shell. Mater. Des. 27, 1148–1151 (2006)

    Article  Google Scholar 

  7. J. Liu, Y. Liu, H. Hu, I. Hao, Indoor Air’ 90. In: Proceedings of the Fifth International Conference on Indoor Air Quality and Climate, vol 2 pp 725–730 (1990)

  8. S. Okamoto, Indoor Air’ 90. In: Proceedings of the Fifth International Conference on Indoor Air Quality and Climate, vol 2, Toronto, Canada, pp. 561–564 (1990)

  9. B.P. Leaderer, S.K. Hammond, Evaluation of vapor-phase nicotine and respirable suspended particle mass as markers for environmental tobacco smoke Environ. Sci. Technol. 25(4), 770–777 (1991)

    Article  Google Scholar 

  10. A. Baez, H. Padilla, R. Garcia et al., Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa. Sci. Total Environ. 302, 211–226 (2003)

    Article  ADS  Google Scholar 

  11. C. Marchand, B. Buillot, S. Le, Aldehyde measurements in indoor environments in Strasbourg. Environ 40, 1336–1345 (2006)

    Google Scholar 

  12. B. Eriksson, L. Johanssin, I. Svedung, Filtration of formaldehyde contaminated indoor air. In: The Nordest Symposium on Air Pollution Abatement by Filtration and Respiratory Protection, Copenhagen (1980)

  13. H.D. Gesser, The reduction of indoor formaldehyde gas and that emanating from urea formaldehyde foam insulation. Environ. Int. 10, 305–307 (1984)

    Article  Google Scholar 

  14. Y. Sekine, A. Nishimura, Removal of formaldehyde from indoor air by passive type air-cleaning materials. Atmos. Environ. 35, 2001–2007 (2001)

    Article  ADS  Google Scholar 

  15. A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006)

    Article  ADS  Google Scholar 

  16. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Sci. Eng. R-Rep 28, 1–63 (2000)

    Article  Google Scholar 

  17. D.Y. Godovsky, Device applications of polymer-nanocomposites. Biopolymers·PVA hydrogels, anionic polymerisation nanocomposites (Springer, New York, 2000), pp. 163–205

    Book  Google Scholar 

  18. P. Li, N.H. Kim, S. Bhadra et al., Electroresponsive property of novel poly (acrylate-acryloyloxyethyl trimethyl ammonium chloride)/clay nanocomposite hydrogels. Adv Mater Res 79, l2263–l2266 (2009). (Trans Tech Pub)

    Article  Google Scholar 

  19. P. Li, N.H. Kim, D. Hui et al., Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl. Clay Sci. 46, 414–417 (2009)

    Article  Google Scholar 

  20. S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)

    Article  Google Scholar 

  21. Z. Zhiaho, Q. Shi, J. Peng et al., Partial delamination of the organo-montmorillonite with surfactant containing hydroxyl groups in maleated poly (propylene carbonate). Polymer 47, 8548–8555 (2006)

    Article  Google Scholar 

  22. D.D. Evanoff, G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7), 1221–1231 (2005)

    Article  Google Scholar 

  23. I.E. Abbott’s, Graphene: exploring carbon flatland. Phys. Today 60, 35 (2007)

    Google Scholar 

  24. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    Article  ADS  Google Scholar 

  25. D.R. Dreyer, S. Park, C.W. Bielawski et al., The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  26. G. Wang, J. Yang, J. Park et al., Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  Google Scholar 

  27. G. Wang, X. Shen, B. Wang et al., Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364 (2009)

    Article  Google Scholar 

  28. X. Li, X. Wang, L. Zhang, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  ADS  Google Scholar 

  29. P. Blake, P.D. Brimicombe, R.R. Nair, Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008)

    Article  ADS  Google Scholar 

  30. W.S. Hung, C.H. Tsou, M. De Guzman et al., Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014)

    Article  Google Scholar 

  31. W.S. Hung, Q.F. An, M. De Guzman et al., Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 68, 670–677 (2014)

    Article  Google Scholar 

  32. C.H. Tsou, Q.F. An, S.C. Lo et al., Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 477, 93–100 (2015)

    Article  Google Scholar 

  33. Y.J. Fu, C.L. Lai, C.C. Hu, Extraordinary transport behavior of gases in isothermally annealed poly (4-methyl-1-pentene) membranes. J. Polym. Sci. Pol. Phys. 54, 2368–2376 (2016)

    Article  ADS  Google Scholar 

  34. P.Z. Sun, M.K.L. Zhu, M.L. Wan, Selective ion penetration of graphene oxide membranes. ACS Nano 7, 428–437 (2013)

    Article  Google Scholar 

  35. R.K. Joshi, P. Carbone, F.C. Wang et al., Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014)

    Article  ADS  Google Scholar 

  36. J. Liang, Z. Cai, L. Li, Scalable and facile preparation of graphene aerogel for air purification. Rsc Adv. 4, 4843–4847 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to sincerely thank the Special Fund for Beijing Common Construction Project and Beijing Forestry University (Grant no. 2016HXKFCLXY001) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwen Pu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Han, X. & Pu, J. Formaldehyde adsorption composite paper with nacre-inspired structure and high mechanical strength properties. Appl. Phys. A 125, 453 (2019). https://doi.org/10.1007/s00339-019-2723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2723-5

Navigation