Advertisement

Applied Physics A

, 125:414 | Cite as

Dual-band negative-permittivity metamaterial using crossed loop resonator

  • Soumen PanditEmail author
  • Akhilesh Mohan
  • Priyadip Ray
Article
  • 94 Downloads

Abstract

This paper presents a novel dual-band negative-permittivity metamaterial (MTM). The MTM is based on a crossed loop resonator (CLR) which exhibits negative-permittivity property at 4.85–5.58 GHz and 9.34–15.48 GHz frequency bands under the normal incidence of EM wave. The MTM shows epsilon-very-large (EVL) and mu-near-zero (MNZ) properties near the resonance frequencies (4.85 GHz and 9.34 GHz). Thus, low-impedance characteristics are obtained around the resonance frequencies of the CLR. The CLR MTM is insensitive to the polarization and incident angle of the imposed EM wave (for incident angle < 20°). This MTM, which is polarization and incident angle independent, can be used for gain enhancement of magnetic dipole antennas, design of filters and ultrathin microwave absorbers.

Notes

References

  1. 1.
    C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley-IEEE Press, Hoboken, 2005)CrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10, 4785–4809 (1998)CrossRefADSGoogle Scholar
  3. 3.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999)CrossRefADSGoogle Scholar
  4. 4.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRefADSGoogle Scholar
  5. 5.
    T.J. Cui, R. Liu, D.R. Smith, Metamaterials: Theory, Design, and Applications (Springer Science, New York, 2010)CrossRefGoogle Scholar
  6. 6.
    D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109(1)–(3) (2006)CrossRefADSGoogle Scholar
  7. 7.
    C.C. Chen et al., Fabrication of three dimensional split ring resonators by stress-driven assembly method. Opt. Express 20(9), 9415–9420 (2012)CrossRefADSGoogle Scholar
  8. 8.
    Jingping Zhong, Yongjun Huang, Guangjun Wen, Haibin Sun, Oghenemuero Gordon, Weiren Zhu, Dual-band negative permittivity metamaterial based on cross circular loop resonator with shorting stubs. IEEE Antennas Wirel. Propag. Lett. 11, 803–806 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Yao-Wei Huang et al., Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20(2), 1760–1768 (2012)CrossRefADSGoogle Scholar
  10. 10.
    Kathryn L. Smith, Ryan S. Adams, Spherical spiral metamaterial unit cell for negative permeability and negative permittivity. IEEE Trans. Antennas Prop. 66(11), 6425–6428 (2018)CrossRefADSGoogle Scholar
  11. 11.
    Z. He, J. Jin, Y. Zhang, Y. Duan, Design of a two-dimensional “T” shaped metamaterial with wideband, low loss. IEEE Trans. Appl. Superconduct. 29(2), 1100204(1)–(4) (2019)Google Scholar
  12. 12.
    S. Narayan, G. Gulati, B. Sangeetha, R.U. Nair, Novel metamaterial-element-based FSS for airborne radome applications. IEEE Trans. Antennas Prop. 66(9), 4695–4707 (2018)CrossRefADSGoogle Scholar
  13. 13.
    S.S. Islam, M.R.I. Faruque, M.T. Islam, M.T. Ali, A new wideband negative refractive index metamaterial for dual-band operation. Appl. Phys. A 123, 252(1)–(5) (2017)ADSGoogle Scholar
  14. 14.
    S. Pandit, A. Mohan, P. Ray, Metamaterial-inspired low-profile high-gain slot antenna. Microw. Opt. Technol. Lett. 2019, 1–6 (2019)Google Scholar
  15. 15.
    D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617(1)–(11) (2005)ADSGoogle Scholar
  16. 16.
    T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 1–4 (2003)CrossRefGoogle Scholar
  17. 17.
    G. Lovat, P. Burghignoli, F. Capolino, D.R. Jackson, Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas. IET Microw. Antennas Propag. 1, 177–183 (2007)CrossRefGoogle Scholar
  18. 18.
    I. Bahl, P. Bhartia, Microwave solid state circuit design, 2nd edn. (New York, Wiley, 2003)Google Scholar
  19. 19.
    A. Sellier et al., Resonant circuit model for efficient metamaterial absorber. Opt. Express 21, A997–A1006 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Pandit, A. Mohan, P. Ray, A low-profile high-gain substrate-integrated waveguide-slot antenna with suppressed cross polarization using metamaterial. IEEE Antennas Wirel. Propag. Lett. 16, 1614–1617 (2017)CrossRefADSGoogle Scholar
  21. 21.
    J. Carver, V. Reignault, F. Gadot, Engineering of the metamaterial-based cut-band filter. Appl. Phys. A 117, 513–516 (2014)CrossRefGoogle Scholar
  22. 22.
    Nguyen Thi Quynh Hoa, Tran Sy Tuan, Lam Trung Hieu, Bach Long Giang, Facile design of an ultra-thin broadband metamaterial absorber for C-band applications. Nature Sci. Rep. 9, 1–9 (2019)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.G S Sanyal School of TelecommunicationsIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Electronics and Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations