Skip to main content
Log in

Dual-band negative-permittivity metamaterial using crossed loop resonator

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a novel dual-band negative-permittivity metamaterial (MTM). The MTM is based on a crossed loop resonator (CLR) which exhibits negative-permittivity property at 4.85–5.58 GHz and 9.34–15.48 GHz frequency bands under the normal incidence of EM wave. The MTM shows epsilon-very-large (EVL) and mu-near-zero (MNZ) properties near the resonance frequencies (4.85 GHz and 9.34 GHz). Thus, low-impedance characteristics are obtained around the resonance frequencies of the CLR. The CLR MTM is insensitive to the polarization and incident angle of the imposed EM wave (for incident angle < 20°). This MTM, which is polarization and incident angle independent, can be used for gain enhancement of magnetic dipole antennas, design of filters and ultrathin microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley-IEEE Press, Hoboken, 2005)

    Book  Google Scholar 

  2. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10, 4785–4809 (1998)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  5. T.J. Cui, R. Liu, D.R. Smith, Metamaterials: Theory, Design, and Applications (Springer Science, New York, 2010)

    Book  Google Scholar 

  6. D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109(1)–(3) (2006)

    Article  ADS  Google Scholar 

  7. C.C. Chen et al., Fabrication of three dimensional split ring resonators by stress-driven assembly method. Opt. Express 20(9), 9415–9420 (2012)

    Article  ADS  Google Scholar 

  8. Jingping Zhong, Yongjun Huang, Guangjun Wen, Haibin Sun, Oghenemuero Gordon, Weiren Zhu, Dual-band negative permittivity metamaterial based on cross circular loop resonator with shorting stubs. IEEE Antennas Wirel. Propag. Lett. 11, 803–806 (2012)

    Article  ADS  Google Scholar 

  9. Yao-Wei Huang et al., Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20(2), 1760–1768 (2012)

    Article  ADS  Google Scholar 

  10. Kathryn L. Smith, Ryan S. Adams, Spherical spiral metamaterial unit cell for negative permeability and negative permittivity. IEEE Trans. Antennas Prop. 66(11), 6425–6428 (2018)

    Article  ADS  Google Scholar 

  11. Z. He, J. Jin, Y. Zhang, Y. Duan, Design of a two-dimensional “T” shaped metamaterial with wideband, low loss. IEEE Trans. Appl. Superconduct. 29(2), 1100204(1)–(4) (2019)

    Google Scholar 

  12. S. Narayan, G. Gulati, B. Sangeetha, R.U. Nair, Novel metamaterial-element-based FSS for airborne radome applications. IEEE Trans. Antennas Prop. 66(9), 4695–4707 (2018)

    Article  ADS  Google Scholar 

  13. S.S. Islam, M.R.I. Faruque, M.T. Islam, M.T. Ali, A new wideband negative refractive index metamaterial for dual-band operation. Appl. Phys. A 123, 252(1)–(5) (2017)

    ADS  Google Scholar 

  14. S. Pandit, A. Mohan, P. Ray, Metamaterial-inspired low-profile high-gain slot antenna. Microw. Opt. Technol. Lett. 2019, 1–6 (2019)

    Google Scholar 

  15. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617(1)–(11) (2005)

    ADS  Google Scholar 

  16. T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 1–4 (2003)

    Article  Google Scholar 

  17. G. Lovat, P. Burghignoli, F. Capolino, D.R. Jackson, Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas. IET Microw. Antennas Propag. 1, 177–183 (2007)

    Article  Google Scholar 

  18. I. Bahl, P. Bhartia, Microwave solid state circuit design, 2nd edn. (New York, Wiley, 2003)

    Google Scholar 

  19. A. Sellier et al., Resonant circuit model for efficient metamaterial absorber. Opt. Express 21, A997–A1006 (2013)

    Article  Google Scholar 

  20. S. Pandit, A. Mohan, P. Ray, A low-profile high-gain substrate-integrated waveguide-slot antenna with suppressed cross polarization using metamaterial. IEEE Antennas Wirel. Propag. Lett. 16, 1614–1617 (2017)

    Article  ADS  Google Scholar 

  21. J. Carver, V. Reignault, F. Gadot, Engineering of the metamaterial-based cut-band filter. Appl. Phys. A 117, 513–516 (2014)

    Article  Google Scholar 

  22. Nguyen Thi Quynh Hoa, Tran Sy Tuan, Lam Trung Hieu, Bach Long Giang, Facile design of an ultra-thin broadband metamaterial absorber for C-band applications. Nature Sci. Rep. 9, 1–9 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Pandit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, S., Mohan, A. & Ray, P. Dual-band negative-permittivity metamaterial using crossed loop resonator. Appl. Phys. A 125, 414 (2019). https://doi.org/10.1007/s00339-019-2710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2710-x

Navigation