Advertisement

Applied Physics A

, 125:413 | Cite as

Enhanced dielectric and microwave absorption properties of Y2Ti2O7 ceramics by Sr doping

  • Qinlong WenEmail author
  • Wancheng Zhou
  • Hui Gao
  • Yingying Zhou
  • Fa Luo
  • Dongmei Zhu
  • Zhibin Huang
  • Yuchang Qing
Article
  • 46 Downloads

Abstract

Sr-doped Y2Ti2O7 has been synthesized by hot-pressing sintering in the vacuum with graphite die. The thermogravimetric analysis, electrical conductivity, dielectric and microwave absorption properties of Y2-xSrxTi2O7-δ (x = 0.05, 0.1, 0.15, 0.2) investigated. The ε′ of Y1.8Sr0.2Ti2O7-δ is four times larger than the pure Y2Ti2O7 and twice larger than that of Y1.8Ca0.2Ti2O7-δ at 8.2 GHz. The ε’’ of Y2-xSrxTi2O7-δ is also enhanced significantly. The reflection loss of Y0.85Sr0.15Ti2O7-δ with a thickness of 0.85 mm reaches a maximum absorbing peak of − 29.68 dB and bandwidth (reflection loss ≤ − 5 dB) of 2.9 GHz. These findings pave the way for the development of high dielectric constant materials operating in the 8.2–12.4 GHz region with potential applications in thin and efficient microwave absorber.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51701148, No. 51602260), and the State Key Laboratory of Solidification Processing (NWPU), China (Grant Nos. KP201422 and KP201604).

References

  1. 1.
    F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)CrossRefADSGoogle Scholar
  2. 2.
    L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Int. Mater. Rev. 58, 203–259 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Kumar, V. Agarwala, D. Singh, Ceram. Int. 40, 1797–1806 (2014)CrossRefGoogle Scholar
  4. 4.
    D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon 111, 722–732 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Gao, F. Luo, Q. Wen, S. Duan, W. Zhou, D. Zhu, Ceram. Int. 44, 6010–6015 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Li, D. Lv, K. Chen, J. Non-Cryst, Solids 358, 2917–2921 (2012)Google Scholar
  7. 7.
    Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28, 486–490 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Lin, Z.Y. Zhao, D. Liu, Y.L. Xie, S. Dong, Z.B. Yan, J.M. Liu, J. Appl. Phys. 113, 17D903 (2013)CrossRefGoogle Scholar
  9. 9.
    S.T. Nguyen, T. Nakayama, H. Suematsu, T. Suzuki, M. Takeda, K. Niihara, Ceram. Int. 42, 11314–11323 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Yin, H. Wang, M. Xing, Y. Fu, Y. Tian, T. Jiang, X. Luo, J. Lumin. 182, 183–188 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Soulié, D. Menut, J.-P. Crocombette, A. Chartier, N. Sellami, G. Sattonnay, I. Monnet, J.-L. Béchade, J. Nucl. Mater. 480, 314–322 (2016)CrossRefADSGoogle Scholar
  12. 12.
    Z. Chen, T. Chen, W. Gong, W. Xu, D. Wang, Q. Wang, A. Srivastava, J. Am. Ceram. Soc. 96, 1857–1862 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Xiao, Y. Zhang, W.J. Weber, Phys. Chem. Chem. Phys. 14, 6556–6560 (2012)CrossRefGoogle Scholar
  14. 14.
    J.K. Gill, O.P. Pandey, K. Singh, Int. J. Hydrog. Energ. 37, 3857–3864 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Ding, Y. Xiao, Y. Lu, T. Tao, Q. Zhang, Rare Met. 30, 624–627 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Ding, Y. Xiao, P. Han, Q. Zhang, J. Rare Earths 28, 765–768 (2010)CrossRefGoogle Scholar
  17. 17.
    N. Kim, C.P. Grey, Dalton Trans 19, 3048–3052 (2004)CrossRefGoogle Scholar
  18. 18.
    J.K. Gill, O.P. Pandey, K. Singh, Solid State Sci. 13, 1960–1966 (2011)CrossRefADSGoogle Scholar
  19. 19.
    H. Xiao, Y. Zhang, W.J. Weber, RSC Adv. 2, 7235 (2012)CrossRefGoogle Scholar
  20. 20.
    Q. Wen, W. Zhou, Y. Wang, F. Luo, D. Zhu, Z. Huang, Y. Qing, J. Alloy. Compd. 741, 700–706 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70(2), 400–409 (2010)CrossRefGoogle Scholar
  22. 22.
    K.C. Kao, Dielectric phenomena in solids (Academic press, Cambridge, 2004)Google Scholar
  23. 23.
    R. Inada, T. Mori, R. Kumasaka, R. Ito, T. Tojo, Y. Sakurai, Int. J. Appl. Ceram. Tech. 16, 264–272 (2019)CrossRefGoogle Scholar
  24. 24.
    A.K. Jonscher, J. Phys, D Appl. Phys. 32(14), R57–R70 (1999)CrossRefGoogle Scholar
  25. 25.
    Y. Li, R. Liu, X. Pang, X. Zhao, Y. Zhang, G. Qin, X. Zhang, Carbon 126, 372–381 (2018)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, X. Su, F. Luo, J. Xu, J. Wang, X. He, Y. Qu, Ceram. Int. 44, 1995–2001 (2018)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, J. Mater. Chem C 4, 1860–1870 (2016)CrossRefGoogle Scholar
  28. 28.
    W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, N. Travitzky, J. Eur. Ceram. Soc. 36, 3681–3689 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Material EngineeringXi’an Aeronautical UniversityXi’anChina

Personalised recommendations