Applied Physics A

, 125:402 | Cite as

Zn doping effect on the properties of SnO2 nanostructure by co-precipitation technique

  • Abebe G. HabteEmail author
  • Fekadu G. Hone
  • Francis B. Dejene


Nanocrystalline tin dioxide (SnO2) doped with Zn (1, 2, 3, and 4% molar ratio) was synthesized via co-precipitation method. The influences of replacing tetravalent Sn4+ ions of SnO2 by divalent Zn2+ ions on their structural, optical and morphological properties were studied. The XRD pattern showed the rutile tetragonal phase for all doped and undoped SnO2 samples. The XRD studies further confirmed that the average crystallite sizes of the doped samples decreased with the increasing of dopant concentrations. The SEM images verified that the grain size and surface morphology changed with the concentration of Zn2+ doping. The EDX analyses confirmed that the prepared nanomaterials were composed of the expected elements tin, oxygen and zinc. The optical properties of the nanomaterials were investigated by means of UV–Vis spectroscopy technique. The band gap energies were calculated using Tauc’s method and it was found to decrease when Zn2+ concentration increased. Room temperature photoluminescence study at the excitation wavelength of 280 nm showed strong and weak emission peaks between 340 and 420 nm.



The authors would like to thank the National Research Foundation, South Africa, Ministry of Education of Ethiopia and Embassy of Ethiopia in South Africa/Pretoria for financial support.


This study was supported by the National Research Foundation, South Africa and Ministry of Education, Ethiopia.


  1. 1.
    B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, RSC Adv. 4, 6141 (2014)CrossRefGoogle Scholar
  2. 2.
    E.T. Selvi, S.M. Sundar, J. Mater. Sci. Mater. Electron. 28, 15021–15032 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Haridas, V. Gupta, Sens. Actuators B Chem. 166–167, 156–164 (2012)CrossRefGoogle Scholar
  4. 4.
    E.T. Tan, G.W. Ho, A.S. Wong, S. Kawi, A.T. Wee, Nanotechnology 19, 255706 (2008)CrossRefADSGoogle Scholar
  5. 5.
    A. Papaderakis, I. Mintsouli, J. Georgieva, S. Sotiropoulos, Catalysts 7, 80 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Song, X. Li, Y. Cui, D. Xiong, Y. Wang, J. Zeng, L. Dong, D. Li, X. Sun, Int. J. Hydrogen Energy 40, 14314–14321 (2015)CrossRefGoogle Scholar
  7. 7.
    E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51, 6243–6251 (1980)CrossRefADSGoogle Scholar
  8. 8.
    C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloy. Compd. 666, 392–405 (2016)CrossRefGoogle Scholar
  9. 9.
    M.P. Subramaniam, G. Arunachalam, R. Kandasamy, P. Veluswamy, I. Hiroya, J. Mater. Sci. Mater. Electron. 29, 658–666 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Singh, R.C. Singh, Ceram. Int. 43, 2350–2360 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Mater. Sci. Poland 32, 98–101 (2014)CrossRefADSGoogle Scholar
  12. 12.
    H. Kaur, H.S. Bhatti, K. Singh, J. Mater. Sci. Mater. Electron. 29, 2026–2034 (2017)CrossRefGoogle Scholar
  13. 13.
    V. Kumar, K. Singh, A. Kumar, M. Kumar, K. Singh, A. Vij, A. Thakur, Mater. Res. Bull. 85, 202–208 (2017)CrossRefGoogle Scholar
  14. 14.
    C.A. Ibarguen, A. Mosquera, R. Parra, M.S. Castro, J.E. Rodríguez-Páez, Mater. Chem. Phys. 101, 433–440 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Aziz, S.S. Abbas, W.R.W. Baharom, W.Z.W. Mahmud, Mater. Lett. 74, 62–64 (2012)CrossRefGoogle Scholar
  16. 16.
    M.R. Panigrahi, M. Devi 1832, 090013 (2017)Google Scholar
  17. 17.
    A.-M. Ungureanu, O. Oprea, B.S. Vasile, C. Andronescu, G. Voicu, I. Jitaru, Cent. Eur. J. Chem. 12, 909–917 (2014)CrossRefGoogle Scholar
  18. 18.
    M.A.M. Akhir, K. Mohamed, H.L. Lee, S.A. Rezan, Procedia Chem. 19, 993–998 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Akram, A.T. Saleh, W.A.W. Ibrahim, A.S. Awan, R. Hussain, Ceram. Int. 42, 8613–8619 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, J. Alloy. Compd. 634, 37–42 (2015)CrossRefGoogle Scholar
  21. 21.
    Z. Lin, N. Li, Z. Chen, P. Fu, Sens. Actuators B Chem. 239, 501–510 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Kou, C. Wang, M. Ding, C. Feng, X. Li, J. Ma, H. Zhang, Y. Sun, G. Lu, Sens. Actuators B Chem. 236, 425–432 (2016)CrossRefGoogle Scholar
  23. 23.
    R.K. Mishra, A. Kushwaha, P.P. Sahay, RSC Adv. 4, 3904–3912 (2014)CrossRefGoogle Scholar
  24. 24.
    V. Senthilkumar, P. Vickraman, R. Ravikumar, J. Sol-Gel. Sci. Technol. 53, 316–321 (2009)CrossRefGoogle Scholar
  25. 25.
    V. Kumar, K. Singh, J. Sharma, A. Kumar, A. Vij, A. Thakur, J. Mater. Sci. Mater. Electron. 28, 18849–18856 (2017)CrossRefGoogle Scholar
  26. 26.
    A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, J. Lumin. 131, 1–6 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Singh, V.S. Kundu, A.S. Maan, J. Mol. Struct. 1115, 250–257 (2016)CrossRefADSGoogle Scholar
  28. 28.
    S. Gautam, A. Thakur, A. Vij, J. Suk, I.-J. Lee, Y.-J. Park, T.-J. Shin, M.-G. Kim, H.-J. Shin, J.-M. Lee, J.-M. Chen, J. Song, K.H. Chae, Thin Solid Films 546, 250–254 (2013)CrossRefADSGoogle Scholar
  29. 29.
    N. Lavanya, C. Sekar, E. Fazio, F. Neri, S.G. Leonardi, G. Neri, Int. J. Hydrogen Energy 42, 10645–10655 (2017)CrossRefGoogle Scholar
  30. 30.
    R.K. Mishra, P.P. Sahay, Mater. Res. Bull. 47, 4112–4118 (2012)CrossRefGoogle Scholar
  31. 31.
    N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, S. Ragupathy, Appl. Surf. Sci. 360, 283–290 (2016)CrossRefADSGoogle Scholar
  32. 32.
    B.R. Kumar, B. Hymavathi, J. Asian Ceram. Soc. 5, 94–103 (2018)CrossRefGoogle Scholar
  33. 33.
    P. Chetri, B. Saikia, A. Choudhury, J. Appl. Phys. 113, 233514 (2013)CrossRefADSGoogle Scholar
  34. 34.
    S. Thanikaikarasan, K. Sundaram, T. Mahalingam, S. Velumani, J.-K. Rhee, Mater. Sci. Eng. B 174, 242–248 (2010)CrossRefGoogle Scholar
  35. 35.
    E.T. Seid, F.B. Dejene, Z.N. Urgessa, J.R. Botha, Appl. Phys. A 124, 738 (2018)CrossRefADSGoogle Scholar
  36. 36.
    M.P. Deshpande, N. Garg, S.V. Bhatt, P. Sakariya, S.H. Chaki, Mater. Sci. Semicond. Process. 16, 915–922 (2013)CrossRefGoogle Scholar
  37. 37.
    A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)CrossRefADSGoogle Scholar
  38. 38.
    M.K. Hussen, Appl. Phys. A 124, 1–10 (2018)CrossRefGoogle Scholar
  39. 39.
    V. Kumar, K. Singh, K. Singh, S. Kumari, A. Kumar, A. Thakur, Mater. Res. Bull. 1728, 020532 (2016)Google Scholar
  40. 40.
    F.B. Dejene, A. Ali, H. Swart, R. Botha, K. Roro, L. Coetsee, M. Biggs, Open Phys. 9, 1321–1326 (2011)CrossRefADSGoogle Scholar
  41. 41.
    X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Materials (Basel) 10, 1398 (2017)CrossRefADSGoogle Scholar
  42. 42.
    P. Baraneedharan, S.I. Hussain, V.P. Dinesh, C. Siva, P. Biji, M. Sivakumar, Appl. Surf. Sci. 357, 1511–1521 (2015)CrossRefADSGoogle Scholar
  43. 43.
    S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Appl. Nanosci. 5, 449–456 (2014)CrossRefADSGoogle Scholar
  44. 44.
    S. VijayarangamuthuKalimuthu, Mater. Lett. 157, 11–14 (2015)CrossRefGoogle Scholar
  45. 45.
    V. Kumar, V. Kumar, S. Som, J.H. Neethling, M. Lee, O.M. Ntwaeaborwa, H.C. Swart, Nanotechnology 25, 135701 (2014)CrossRefADSGoogle Scholar
  46. 46.
    A. Kar, M.A. Stroscio, M. Dutta, J. Kumari, M. Meyyappan, Appl. Phys. Lett. 94, 101905 (2009)CrossRefADSGoogle Scholar
  47. 47.
    P.S. Shewale, K.U. Sim, Y.-B. Kim, J.H. Kim, A.V. Moholkar, M.D. Uplane, J. Lumin. 139, 113–118 (2013)CrossRefGoogle Scholar
  48. 48.
    X. Li, K. Peng, Y. Dou, J. Chen, Y. Zhang, G. An, Nanoscale Res. Lett. 13, 14 (2018)CrossRefADSGoogle Scholar
  49. 49.
    G. Zhang, S. Zhang, L. Yang, Z. Zou, D. Zeng, C. Xie, Sens. Actuators B Chem. 188, 137–146 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the Free StatePhuthaditjhabaSouth Africa

Personalised recommendations