Applied Physics A

, 125:365 | Cite as

A comparative study on the influence of the addition of different nano-oxide particles on the thermopower of (Bi,Pb)-2223 superconductor

  • H. T. RahalEmail author
  • R. Awad
  • A. M. Abdel-Gaber
  • S. Marhaba
  • A. I. Abou-Aly


Solid-state reaction technique was used to prepare superconductor samples with nominal composition of (SnO2)x(Bi,Pb)-2223 and (NiO)x(Bi,Pb)-2223, where 0.0 ≤ x ≤ 0.2 wt%. The prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impact of SnO2 and NiO nanoparticles addition on the thermopower of (Bi,Pb)-2223 was measured using a standard differential technique. The Seebeck coefficient values in the presence of NiO nanoparticles were about 5–37.9% higher than those obtained with the addition of SnO2 nanoparticles. Higher values of Seebeck coefficients result in a wide variety of applications of these superconductors such as electronics and thermoelectric devices. The obtained results were analyzed according to the two-band model (Fermi-liquid model) and the two-band model with an extra linear term. The Fermi velocity (υF), Fermi energy, Fermi temperature (TF), Fermi wavenumber (KF), Fermi wavelength (λF) as well as the carrier concentration (N/V) values were calculated and discussed as a function of the nanoparticles content.



  1. 1.
    H.T. Rahal, R. Awad, A.M. Abdel-Gaber, Phys. B Condens. Matter. 536, 803 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    H.T. Rahal, A.M. Abdel-Gaber, R. Awad, Chem. Eng. Commun. 204, 348 (2017)CrossRefGoogle Scholar
  3. 3.
    W. Abdeen, S. Marahba, R. Awad, A.A. Aly, I.H. Ibrahim, M. Matar, J. Adv. Ceram. 5, 54 (2016)CrossRefGoogle Scholar
  4. 4.
    H.T. Rahal, R. Awad, A.A. Gaber, M. Roumie, J. Supercond. Nov. Magn. 30, 1971 (2016)CrossRefGoogle Scholar
  5. 5.
    H.T. Rahal, R. Awad, A.M. Abdel-Gaber, J. Phys. Conf. Ser. 869, 012026 (2017)CrossRefGoogle Scholar
  6. 6.
    M.A. Aksan, M.E. Yakinci, J. Alloys Compd. 385, 33 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Gündoğmuş, B. Özçelik, A. Sotelo, M.A. Madre, J. Phys: Conf. Ser. 667, 012001 (2016)Google Scholar
  8. 8.
    B. Özkurt, B. Özçelik, K. Kıymaç, M.A. Aksan, M.E. Yakıncı, Phys. C. 467, 112 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    H.T. Rahal, A.M. Abdel-Gaber, R. Awad, Int. J. Electrochem. Sci. 12, 10115 (2017)CrossRefGoogle Scholar
  10. 10.
    H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D. Bakeer, J. Nanomater. (2017). CrossRefGoogle Scholar
  11. 11.
    D.S. Bai, R.P. Suvarna, C.B.M. Krishna, IJACS 4, 98 (2016)Google Scholar
  12. 12.
    A.N. Naje, A.S. Norry, A.M. Suhail, Int. J. Innov. Res. Sci. Eng. Technol. 2, 7068 (2013)Google Scholar
  13. 13.
    S. Blessi, M.M.L. Sonia, S. Vijayalakshmi, S. Pauline, Chem. Tech. Res. 6, 2153 (2014)Google Scholar
  14. 14.
    P. Chetri, B. Choudhury, A. Choudhury, J. Mater. Chem. C 2, 9294 (2014)CrossRefGoogle Scholar
  15. 15.
    M. El-Kemary, N. Nagy, I. El-Mehasseb, Mat. Sci. Semicond. Proc. 16, 1747 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Wu, G. Wu, L. Wang, Powder Technol 269, 443 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Ayeshamariam, V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. PerumalSamy, M. Jayachandran, J. Nanoelectron. Optoelectron. 8, 273 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, F. Zhang, J. Colloid Interface Sci. 533, 481 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, F. Zhang, Powder Technol. 333, 153 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    C.P. Poole, H.A. Farach, R.J. Creswich, Superconductivity (Elsevier, Amsterdam, 1995)Google Scholar
  21. 21.
    Y. Xin, K.W. Wong, C.X. Fan, Z.Z. Sheng, F.T. Chan, Phys. Rev. B. 48, 557 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    U. Gottwick, K. Gloss, S. Horn, F. Steglich, N. Grewe, J. Magn. Magn. Mater. 47, 536 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    L. Forro, M. Raki, J.Y. Henry, C. Ayach, Solid State Commun. 69, 1097 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    E.M.M. Ibrahim, S.A. Saleh, S.A. Ahmed, Supercond. Sci. Technol. 21, 075001 (2008). ADSCrossRefGoogle Scholar
  25. 25.
    L. Onsager, Phy. Rev. 37, 405 (1931)ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Solid State Commun. 149, 281 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J. Casquilho, P. Teixeira, Introduction to statistical physics (Cambridge University Press, Cambridge, 2014)zbMATHGoogle Scholar
  28. 28.
    M.J. Madou, Solid-state physics fluidics and analytical techniques in micro-and nanotechnology, vol. 1 (CRC Press, Boca Raton, 2011)CrossRefGoogle Scholar
  29. 29.
    F.Rana,Free electron gas in 1D and 2D- ECE 4070: Physics of semiconductors and nanostructures, lecture handouts—Cornell University(2009)
  30. 30.
    U. Mizutani, Introduction to the electron theory of metals (Cambridge University Press, Cambridge, 2001)CrossRefGoogle Scholar
  31. 31.
    Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, H.J. Wu, Chin. Phys. B. 27, 117806 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Cooper, S.D. Obertelli, A. Carrington, J.W. Loram, W.Y. Liang, Phys. C: Supercond. 185, 1265 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    N. Doiron-Leyraud, S. Lepault, O. Cyr-Choiniere, B. Vignolle, G. Grissonnanche, F. Laliberté, X. Zhao, Phys. Rev. 3, 021019 (2013)CrossRefGoogle Scholar
  34. 34.
    M.F. Crommie, A. Zettl, T.W. Barbee, M.L. Cohen, Phys. Rev. B. 37, 9734 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    M.N. Hlopkin, J. Toth, A.A. Sikov, E. Zsoldos, Solid State Commun. 68, 1011 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, K. Li, J. Alloys Compd. 461, 9 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Xiao, J. Yang, Q. Jiang, L. Fu, Y. Luo, D. Zhang, Z. Zhou, J. Electron. Mater. 45, 1266 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Xin, D. Ford, Z.Z. Sheng, Rev. Sci. Instrum. 63, 2263 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    H. Lüth, H. Ibach, Solid-state physics: an introduction to principles of materials science (Springer, Berlin, 2003)zbMATHGoogle Scholar
  40. 40.
    Kuno, M. Introductory nanoscience. (2011)Google Scholar
  41. 41.
    H. Garland Science Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, Oxford, 2004)Google Scholar
  42. 42.
    D. Nowak, M.J. Lee, Phys. Rev. B 5, 2851 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceBeirut Arab UniversityBeirutLebanon
  2. 2.Department of Physics, Faculty of ScienceBeirut Arab UniversityBeirutLebanon
  3. 3.Department of Physics, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations