Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes


We have investigated the electronic properties of single-walled carbon nanotubes (SWCNTs) filled with lead chloride, lead bromide (PbBr2) and lead iodide (PbI2). The filling of SWCNTs and formation of encapsulated one-dimensional nanocrystals of the salts were directly confirmed by high-resolution scanning transmission electron microscopy. The chemical composition of the encapsulated nanocrystals was proven by X-ray photoelectron spectroscopy (XPS). The electronic properties of the filled SWCNTs were characterized by Raman spectroscopy and XPS. All the three lead halogenides result in p-doping of SWCNTs and, consequently, there is a downshift of the SWCNTs’ Fermi level due to the charge transfer towards the salts. The effect is stronger with metallic than semiconducting nanotubes. The efficiency of doping depends on the type of lead halogenide. The doping effect is the strongest for PbI2 and the weakest for PbBr2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Chem. Mater. 12, 202 (2000)

    Article  Google Scholar 

  2. 2.

    E. Borowiak-Palen, M.H. Ruemmeli, T. Gemming, T. Pichler, R.J. Kalenczuk, S.R.P. Silva, Nanotechnology 17, 2415 (2006)

    ADS  Article  Google Scholar 

  3. 3.

    E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M.H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R.J. Kalenczuk, T. Pichler, S.R.P. Silva, Chem. Phys. Lett. 421, 129 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    T. Fujimori, A. Morelos-Gomez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S.Y. Hong, Y.C. Choi, D. Tomanek, K. Kaneko, Nat. Commun. 4, 2162 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    A.A. Tonkikh, V.I. Tsebro, E.A. Obraztsova, K. Suenaga, H. Kataura, A.G. Nasibulin, E.I. Kauppinen, E.D. Obraztsova, Carbon 94, 768 (2015)

    Article  Google Scholar 

  6. 6.

    M. Hart, E.R. White, J. Chen, C.M. McGilvery, C.J. Pickard, A. Michaelides, A. Sella, M.S.P. Shaffer, C.G. Salzmann, Angew. Chem. Int. Ed. 56, 8144 (2017)

    Article  Google Scholar 

  7. 7.

    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, C. R. Phys. 4, 1063 (2003)

    ADS  Article  Google Scholar 

  8. 8.

    J. Sloan, S. Friedrichs, R.R. Meyer, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Inorg. Chim. Acta 330, 1 (2002)

    Article  Google Scholar 

  9. 9.

    R.R. Meyer, J. Sloan, R.E. Dunin-Borkowski, A.I. Kirkland, M.C. Novotny, S.R. Bailey, J.L. Hutchison, M.L.H. Green, Science 289, 1324 (2000)

    ADS  Article  Google Scholar 

  10. 10.

    E. Philp, J. Sloan, A.I. Kirkland, R.R. Meyer, S. Friedrichs, J.L. Hutchison, M.L.H. Green, Nat. Mater. 2, 788 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    L.V. Yashina, A.A. Eliseev, M.V. Kharlamova, A.A. Volykhov, A.V. Egorov, S.V. Savilov, A.V. Lukashin, R. Puttner, A.I. Belogorokhov, J. Phys. Chem. C 115, 3578 (2011)

    Article  Google Scholar 

  12. 12.

    Z.Y. Wang, H. Li, Z. Liu, Z.J. Shi, J. Lu, K. Suenaga, S.K. Joung, T. Okazaki, Z.N. Gu, J. Zhou, Z.X. Gao, G.P. Li, S. Sanvito, E.G. Wang, S. Iijima, J. Am. Chem. Soc. 132, 13840 (2010)

    Article  Google Scholar 

  13. 13.

    R. Carter, J. Sloan, A.I. Kirkland, R.G. Meyer, P.J.D. Lindan, G. Lin, M.L.H. Green, A. Vlandas, J.L. Hutchison, J. Harding, Phys. Rev. Lett. 96, 215501 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    M. Hulman, H. Kuzmany, P.M.F.J. Costa, S. Friedrichs, M.L.H. Green, Appl. Phys. Lett. 85, 2068 (2004)

    ADS  Article  Google Scholar 

  15. 15.

    P.M.F.J. Costa, J. Sloan, T. Rutherford, M.L.H. Green, Chem. Mater. 17, 6579 (2005)

    Article  Google Scholar 

  16. 16.

    B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)

    Article  Google Scholar 

  17. 17.

    B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer, Chem. Phys. Lett 310, 21 (1999)

    ADS  Article  Google Scholar 

  18. 18.

    T.W. Chamberlain, A. Camenisch, N.R. Champness, G.A.D. Briggs, S.C. Benjamin, A. Ardavan, A.N. Khlobystov, J. Am. Chem. Soc. 129, 8609 (2007)

    Article  Google Scholar 

  19. 19.

    M.D. Gimenez-Lopez, A. Chuvilin, U. Kaiser, A.N. Khlobystov, Chem. Commun. 47, 2116 (2011)

    Article  Google Scholar 

  20. 20.

    H. Shiozawa, T. Pichler, A. Gruneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater. 20, 1443 (2008)

    Article  Google Scholar 

  21. 21.

    H. Shiozawa, T. Pichler, C. Kramberger, M. Rummeli, D. Batchelor, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Phys. Rev. Lett. 102, 046804 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    H. Shiozawa, T. Pichler, C. Kramberger, A. Gruneis, M. Knupfer, B. Buchner, V. Zolyomi, J. Koltai, J. Kurti, D. Batchelor, H. Kataura, Phys. Rev. B 77, 153402 (2008)

    ADS  Article  Google Scholar 

  23. 23.

    M.V. Kharlamova, C. Kramberger, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 9, 7998 (2017)

    Article  Google Scholar 

  24. 24.

    M.V. Kharlamova, C. Kramberger, Y. Sato, T. Saito, K. Suenaga, T. Pichler, H. Shiozawa, Carbon 133, 283 (2018)

    Article  Google Scholar 

  25. 25.

    H. Shiozawa, C. Kramberger, R. Pfeiffer, H. Kuzmany, T. Pichler, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Adv. Mater. 22, 3685 (2010)

    Article  Google Scholar 

  26. 26.

    Y.R. Poudel, W. Li, Mater. Today Phys. 7, 7 (2018)

    Article  Google Scholar 

  27. 27.

    M.V. Kharlamova, Prog. Mater. Sci. 77, 125 (2016)

    Article  Google Scholar 

  28. 28.

    P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    M.V. Kharlamova, M. Sauer, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 7, 1383 (2015)

    ADS  Article  Google Scholar 

  31. 31.

    M.V. Kharlamova, M. Sauer, T. Saito, S. Krause, X.J. Liu, K. Yanagi, T. Pichler, H. Shiozawa, Phys. Status Solidi B 250, 2575 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, Y.D. Tretyakov, Phys. Status Solidi B 249, 2328 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, J. Mater. Sci. 48, 8412 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    M.V. Kharlamova, Appl. Phys. A 111, 725 (2013)

    ADS  Article  Google Scholar 

  35. 35.

    V.G. Plekhanov, Prog. Mater. Sci. 49, 787 (2004)

    Article  Google Scholar 

  36. 36.

    S.D. Stranks, H.J. Snaith, Nat. Nanotechnol. 10, 391 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    J. Huang, M. Lai, J. Lin, P. Yang, Adv. Mater. 30, 1802856 (2018)

    Article  Google Scholar 

  38. 38.

    Q. Zhang, Y. Yin, A.C.S. Cent, Science 4, 668 (2018)

    Google Scholar 

  39. 39.

    Q.A. Akkerman, A.L. Abdelhady, L. Manna, J. Phys. Chem. Lett. 9, 2326 (2018)

    Article  Google Scholar 

  40. 40.

    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomen, Handbook of X-ray photoelectron spectroscopy (Perkin-Elmer Corporation, Waltham, 1992)

    Google Scholar 

  41. 41.

    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Carbon 40, 2043 (2002)

    Article  Google Scholar 

  42. 42.

    P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77, 241403 (2008)

    ADS  Article  Google Scholar 

  43. 43.

    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  44. 44.

    S.D.M. Brown, P. Corio, A. Marucci, M.S. Dresselhaus, M.A. Pimenta, K. Kneipp, Phys. Rev. B 61, R5137 (2000)

    ADS  Article  Google Scholar 

  45. 45.

    A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)

    ADS  Article  Google Scholar 

  46. 46.

    M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen, Phys. Rev. Lett. 102, 075501 (2009)

    ADS  Article  Google Scholar 

Download references


This work was funded by the Deutsche Forschungsgemeinschaft (DFG ED 221/3-1).

Author information



Corresponding author

Correspondence to Marianna V. Kharlamova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharlamova, M.V., Kramberger, C., Rudatis, P. et al. Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes. Appl. Phys. A 125, 320 (2019).

Download citation