Applied Physics A

, 125:305 | Cite as

Optical and electronic properties of copper and cobalt substituted nano SrBaFe12O19 synthesized by sol–gel autocombustion method

  • Mohammad Tasleem
  • Mohd. Hashim
  • K. Chandra Babu Naidu
  • Syed Asad Ali
  • D. RavinderEmail author


The current study addresses the synthesis and characterization of Sr0.5Ba0.5Fe12−2xCoxCuxO19 (x = 0.0–0.8) (SBFCCO) nanoparticles prepared via sol–gel autocombustion route. The diffraction pattern revealed the formation of the single phase hexagonal structure. The average crystallite size was noted to be altering from 8 to 12 nm. The TEM pictures also reveal the agglomerated facets like nanoparticles of particle size changing from > 200 to 40 nm for various ‘x’ values. The dielectric parameters were calculated and elucidated as a function of frequency and temperature. In addition, the UV–visible spectra expressed the significant decrease in bandgap energy from 3.54 to 2.80 eV with increase of doping content. Therefore, these samples may reveal wide applications in optoelectronic devices, photo catalytic and sensor based applications because of the wide band gaps.



The authors (D.R and J.L.N.) are very grateful to Prof. G. Prasad, Head, Department of Physics, Osmania University, Hyderabad for his encouragement.


  1. 1.
    N. Boda, G. Boda, K.C.B. Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A.P. Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J. Magn. Magn. Mater. 473, 228–235 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Stuijts, G.W. Rathenau, G.H. Weber, Ferroxdure II And III, anisotropic permanent magnet materials. Philips Tech. Rev. 16, 141–180 (1954)Google Scholar
  3. 3.
    H.C. Fang, C.K. Ong, Epitaxy barium ferrite thin films on LiTaO3 substrate. J. Appl. Phys. 86, 2191–2195 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    V.G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K.S. Ziemer, N.X. Sun, Vittoria, Carmine, Ba-hexaferrite films for next generation microwave devices (invited). J. Appl. Phys. 99, 08M911 (2006)CrossRefGoogle Scholar
  5. 5.
    S.K. Rakshit, S.C. Parida, S. Dash, Z. Singh, B.K. Sen, V. Venugopal, Thermodynamic studies on SrFe12O19(s), SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s). J. Solid State Chem. 180, 523–532 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Vinnik, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, L.S. Mashkovtseva, A.V. Trukhanov, S.V. Trukhanov, S. Nemava, B. Blaschkowski, R. Niewa, Flux single crystal growth of M-type strontium hexaferrite SrFe12O19 by spontaneous crystallization. J. Magn. Magn. Mater. (2017). CrossRefGoogle Scholar
  7. 7.
    M.N. Ashiq, A.S. Asi, S. Farooq, M. Najam-ul-Haq, S. Rehman, Magnetic and electrical properties of M-type nano-strontium hexaferrite prepared by sol-gel combustion method. J. Magn. Magn. Mater. 444, 426–431 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, Effect of lattice strain on structural and magnetic properties of Ca substituted Barium Hexaferrite. J. Magn. Magn. Mater. 458, 30–38 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    M.J. Iqbal, S. Farooq, Could binary mixture of Nd–Ni ions control the electrical behavior of strontium–barium M-type hexaferrite nanoparticles? Mater. Res. Bull. 46, 662–667 (2011)CrossRefGoogle Scholar
  10. 10.
    S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. ElShersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Nandotaria, R.B. Jotania, C.S. Sandhu, M. Hashim, S.S. Meena, P. Bhatt, S.E. Shirsath, Magnetic interactions and dielectric dispersion in Mg substituted M-type Sr-Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique. Ceram. Int. 44, 4426–4435 (2017)CrossRefGoogle Scholar
  12. 12.
    P.P. Alange, S.D. Khirade, A.V. Birajdar, K.M. Humbe, Jadhav, Structural, magnetic and dielectrical properties of Al-Cr Co-substituted M-Type Barium Hexaferrite Nanoparticles. J. Mol. Struct. 1106, 460–467 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    K.M. Ur Rehman, X. Liu, S. Feng, Y. Yang, J. Tang, W. Wei, Z. Wazir, M.W. Khan, C. Zhang, C. Liu, X. Meng, H. Li, Synthesis of Sr0.7YxLa0.3-xFe12-YCoYO19 (x = 0.00, 0.05, 0.10, 0.15) & Y = 0.30, 0.25, 0.20, 0.15) Hexaferrites against structures and magnetic properties prepared by the solid-state reaction method. Chin. J. Phys. 55, 1780–1786 (2017)CrossRefGoogle Scholar
  14. 14.
    T.C. Verma, R.G. Goyal, M.I. Mendiratta, Alam, Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater. Sci. Eng. 60, 156–162 (1999)CrossRefGoogle Scholar
  15. 15.
    T. Ramaprasad, R.J. Kumar, U. Naresh, M. Prakash, D. Kothandan, K.C.B. Naidu, Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Mater. Res. Exp. 5, 095025 (2018). CrossRefGoogle Scholar
  16. 16.
    N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Structural and ferroelectric properties of microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique. J. Mater. Sci 29, 4738–4742 (2018)Google Scholar
  17. 17.
    Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, (1974), 171Google Scholar
  18. 18.
    U. Naresh, R. J. Kumar, K. C. B. Naidu, Optical, Magnetic and Ferroelectric Properties of Ba0.2Cu0.8-xLaxFe2O4 (x = 0.2 - 0.6) Nanoparticles, Ceramics International 45 (2019) 7515-7523Google Scholar
  19. 19.
    D. Kothandan, R.J. Kumar, M. Prakash, K.C.B. Naidu, Structural, morphological and optical properties of Ba1-xCuxTiO3 (x = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method, Materials Chemistry and Physics 215 (2018) 310–315Google Scholar
  20. 20.
    K.W. Wagner, The Distribution of Relaxation Times in Typical Dielectrics. Ann. Phys. 40, 817–819 (1973)Google Scholar
  21. 21.
    T. Zangina, J. Hassan, R.S. Azis et al., Structural, electrical conductivity and dielectric relaxation behavior of LiHf2(PO4)3 ceramic powders. J. Aust. Ceram. Soc. 54, 307–316 (2018)CrossRefGoogle Scholar
  22. 22.
    N. S. Kumar, R. P. Suvarna and K. C. B. Naidu, Sol-Gel Synthesized and Microwave Heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) Nanoparticles: Structural, Morphological and Dielectric Properties, Ceramics International 44 (2018) 18189-18199Google Scholar
  23. 23.
    C.G. Coops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies. Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  24. 24.
    K. C. B. Naidu, V. N. Reddy, T. S. Sarmash, D. Kothandan, T. Subbarao, N. S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system, J Aust Ceram Soc (2018). CrossRefGoogle Scholar
  25. 25.
    N. S. Kumar, R. P. Suvarna, K. C. B. Naidu, G. R. Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2-zLazTiO3 (z = 0.05–0.2) nanoparticles, Ceramics International 44 (2018) 19408-19420Google Scholar
  26. 26.
    Chandra Babu Naidu, K., Suresh Kumar, N., Ranjith Kumar, G. et al. Temperature and frequency dependence of complex impedance parameters of microwave sintered NiMg ferrites, J. Aust. Ceram. Soc. (2018),
  27. 27.
    S. Karimunnesa, K.M.A. Ullah, M.R. Hasan, F.S. Shanta, R. Islam, M.N.I. Khan, Effect of Holmium substitution on the structural, magnetic and transport properties of CoFe2-xHoxO4 ferrites. J. Magn. Magn. Mater. 457, 57–63 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    N. Raghuram, T.S. Rao, K.C.B. Naidu, Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0–0.8) nanoparticles. Mater. Sci. Semicond. Process. 94, 136–150 (2019)CrossRefGoogle Scholar
  29. 29.
    K.C.B. Naidu, W. Madhuri, Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technology. IEEE Trans. Magn. (2018). CrossRefGoogle Scholar
  30. 30.
    N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Grain and grain boundary conduction mechanism in sol–gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2-0.8) nanofibers. Mater. Chem. Phys. 223, 241–248 (2019)CrossRefGoogle Scholar
  31. 31.
    M.A. Ell Hiti, AC electrical conductivity of Ni–Mg ferrites. J. Phys. D 29, 501–505 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Kumar, K.C.B. Naidu, M.M. Rafi, K.P. Nazeer, A.A. Begam, G.R. Kumar, Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions. Mater. Sci. 36, 123–133 (2018)Google Scholar
  33. 33.
    D. Sivakumar, K.C.B. Naidu, K.P. Nazeer, M.M. Rafi, G. Rameshkumar, B. Sathyaseelan, G. Killivalavan, A.A. Begam, Structural characterization and dielectric properties of Superparamagnetic Iron oxide nanoparticles. J. Korean Ceram. Soc. 55, 230–238 (2018)CrossRefGoogle Scholar
  34. 34.
    D.R. Nayak, K.C.B. Naidu, D. Ravinder, Effect of chromium on structural, morphological and electrical properties of lithium ferrite nanoparticles. SN Appl. Sci. 1, 235 (2019). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsAligarh Muslim UniversityAligarhIndia
  2. 2.Department of PhysicsGITAM Deemed to be UniversityBangaloreIndia
  3. 3.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations