Advertisement

Applied Physics A

, 125:295 | Cite as

Electrical properties of boron-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite films

  • Yūki KatamuneEmail author
  • Satoshi Takeichi
  • Ryota Ohtani
  • Satoshi Koizumi
  • Eiji Ikenaga
  • Kazutaka Kamitani
  • Takeharu Sugiyama
  • Tsuyoshi Yoshitake
Article
  • 43 Downloads

Abstract

Boron-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with boron-blended graphite targets. The effects of boron incorporation on the electrical properties of the films were investigated by hard X-ray photoelectron spectroscopy. Their electrical conductivity increased from 10−7 to 10−1 Ω−1 cm−1 with increasing boron content up to 5 at.%. From the temperature dependence of electrical conductivity, hopping conduction due to localized states produced by boron atoms is predominant in carrier transport. X-ray photoelectron spectra showed the shifts of Fermi levels toward the top of the valence band with increasing boron content. It implies that boron atoms in the films lead to form localized states, which results in enhanced electrical conductivity.

Notes

Acknowledgements

This work was supported by JSPS Grant-in-Aid for Special Purposes Grant Number 25. The synchrotron radiation experiments were performed at the BL47XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B1714). This work was partially supported by JSPS KAKENHI Grant Number JP13J07294, JP15H04127, and JP16K18238.

References

  1. 1.
    W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell Jr., L.M. Smith, R.J. Hamers, Nat. Mater. 1, 253 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, Diamond Relat. Mater. 10, 1952 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    H.J. Zeng, A.R. Konicek, N. Moldovan, F. Mangolini, T. Jacobs, I. Wylie, P.U. Arumugam, S. Siddiqui, R.W. Carpick, J.A. Carlisle, Carbon 84, 103 (2015). (in English) CrossRefGoogle Scholar
  4. 4.
    A.R. Krauss, O. Auciello, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, N. Suetin, J. Appl. Phys. 89, 2958 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S. Ohmagari, T. Yoshitake, Appl. Phys. Express 5, 065202 (2012). (in English) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Katamune, S. Ohmagari, S. Al-Riyami, S. Takagi, M. Shaban, T. Yoshitake, Jpn. J. Appl. Phys. 52, 065801 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, K. Nagayama, Jpn. J. Appl. Phys. 46, L936 (2007). (in English) ADSCrossRefGoogle Scholar
  8. 8.
    T. Yoshitake, K. Hanada, T. Yoshida, Y. Nakagawa, R. Ohtani, K. Sumitani, H. Setoyama, E. Kobayashi, Bull. Am. Phys. Soc. 75, 45–52 (2010)Google Scholar
  9. 9.
    S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, T. Hara, K. Nagayama, Jpn. J. Appl. Phys. 49, 031302 (2010). (in English) ADSCrossRefGoogle Scholar
  10. 10.
    S. Al-Riyami, S. Ohmagari, T. Yoshitake, Appl. Phys. Express 3, 115102 (2010). (in English) ADSCrossRefGoogle Scholar
  11. 11.
    H. Gima, A. Zkria, Y. Katamune, R. Ohtani, S. Koizumi, T. Yoshitake, Appl. Phys. Express 10, 015801 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    S. Ohmagari, S. Al-Riyami, T. Yoshitake, Jpn. J. Appl. Phys. 50, 5101 (2011). (in English) CrossRefGoogle Scholar
  13. 13.
    S. Ohmagari, T. Hanada, Y. Katamune, S. Al-Riyami, T. Yoshitake, Jpn. J. Appl. Phys. 53, 050307 (2014). (in English) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Katamune, S. Takeichi, S. Ohmagari, T. Yoshitake, J. Vac. Sci. Technol., A 33, 061514 (2015). (in English) CrossRefGoogle Scholar
  15. 15.
    T.H. Borst, O. Weis, Phys. Stat. Sol. (A). 154, 423 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    W. Gajewski, P. Achatz, O.A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, J.A. Garrido, Phys. Rev. B. 79, 045206 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T. Yoshitake, Y. Nakagawa, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Sumitani, Y. Agawa, K. Nagayama, Jpn. J. Appl. Phys. 49, 015503 (2010). (in English) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Katamune, S. Ohmagari, H. Setoyama, K. Sumitani, Y. Hirai, T. Yoshitake, ECS Trans. 50, 23 (2013)CrossRefGoogle Scholar
  19. 19.
    K. Kobayashi, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom. Detect. Assoc. Equip. 547, 98 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Ishikawa, E. Ikenaga, K. Horiba, S. Shin, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, H. Nohira, T. Hattori, S. Södergren, B. Wannberg, K. Kobayashi, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom. Detect. Assoc. Equip. 547, 50 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Nagayama, Diamond Relat. Mater. 19, 911 (2010). (in English) ADSCrossRefGoogle Scholar
  22. 22.
    P.N. Vishwakarma, S.V. Subramanyam, J. Appl. Phys. 100, 113702 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    J.-C. Pu, S.-F. Wang, C.-L. Lin, J.C. Sung, Thin Solid Films 519, 521 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M. Koos, S.H.S. Moustafa, E. Szilagyi, I. Pocsik, Diamond Relat. Mater. 8, 1919 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    S. Bhattacharyya, S.R.P. Silva, Thin Solid Films 482, 94 (2005). (in English) ADSCrossRefGoogle Scholar
  26. 26.
    T.F. Lee, T.C. McGill, J. Appl. Phys. 46, 373 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    C.E. Nebel, Semicond. Sci. Technol. 18, S1 (2003). (in English) ADSCrossRefGoogle Scholar
  28. 28.
    O.A. Williams, Semicond. Sci. Technol. 21, R49 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    P. Achatz, O.A. Williams, P. Bruno, D.M. Gruen, J.A. Garrido, M. Stutzmann, Phys. Rev. B. 74, 155429 (2006). (in English) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Katamune, S. Al-Riyami, S. Takeichi, T. Yoshitake, ECS Trans. 75, 45 (2017)CrossRefGoogle Scholar
  31. 31.
    F.R. McFeely, S.P. Kowalczyk, L. Ley, R.G. Cavell, R.A. Pollak, D.A. Shirley, Phys. Rev. B. 9, 5268 (1974). (in English) ADSCrossRefGoogle Scholar
  32. 32.
    J. Schäfer, J. Ristein, R. Graupner, L. Ley, U. Stephan, T. Frauenheim, V.S. Veerasamy, G.A.J. Amaratunga, M. Weiler, H. Ehrhardt, Phys. Rev. B. 53, 7762 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    S. Ohmagari, Y. Katamune, H. Ichinose, T. Yoshitake, Jpn. J. Appl. Phys. 51, 025503 (2012). (in English) ADSCrossRefGoogle Scholar
  35. 35.
    P. Zapol, M. Sternberg, L.A. Curtiss, T. Frauenheim, D.M. Gruen, Phys. Rev. B. 65, 045403 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frontier Research Academy for Young ResearchersKyushu Institute of TechnologyKitakyushuJapan
  2. 2.Department of Applied Science for Electronics and MaterialsKyushu UniversityKasugaJapan
  3. 3.National Institute for Materials Science (NIMS)TsukubaJapan
  4. 4.Japan Synchrotron Radiation Research Institute (JASRI)SayoJapan
  5. 5.Research Center for Synchrotron Light ApplicationsKyushu UniversityKasugaJapan

Personalised recommendations