Skip to main content
Log in

Electrical properties of boron-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Boron-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with boron-blended graphite targets. The effects of boron incorporation on the electrical properties of the films were investigated by hard X-ray photoelectron spectroscopy. Their electrical conductivity increased from 10−7 to 10−1 Ω−1 cm−1 with increasing boron content up to 5 at.%. From the temperature dependence of electrical conductivity, hopping conduction due to localized states produced by boron atoms is predominant in carrier transport. X-ray photoelectron spectra showed the shifts of Fermi levels toward the top of the valence band with increasing boron content. It implies that boron atoms in the films lead to form localized states, which results in enhanced electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell Jr., L.M. Smith, R.J. Hamers, Nat. Mater. 1, 253 (2002)

    Article  ADS  Google Scholar 

  2. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, Diamond Relat. Mater. 10, 1952 (2001)

    Article  ADS  Google Scholar 

  3. H.J. Zeng, A.R. Konicek, N. Moldovan, F. Mangolini, T. Jacobs, I. Wylie, P.U. Arumugam, S. Siddiqui, R.W. Carpick, J.A. Carlisle, Carbon 84, 103 (2015). (in English)

    Article  Google Scholar 

  4. A.R. Krauss, O. Auciello, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, N. Suetin, J. Appl. Phys. 89, 2958 (2001)

    Article  ADS  Google Scholar 

  5. S. Ohmagari, T. Yoshitake, Appl. Phys. Express 5, 065202 (2012). (in English)

    Article  ADS  Google Scholar 

  6. Y. Katamune, S. Ohmagari, S. Al-Riyami, S. Takagi, M. Shaban, T. Yoshitake, Jpn. J. Appl. Phys. 52, 065801 (2013)

    Article  ADS  Google Scholar 

  7. T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, K. Nagayama, Jpn. J. Appl. Phys. 46, L936 (2007). (in English)

    Article  ADS  Google Scholar 

  8. T. Yoshitake, K. Hanada, T. Yoshida, Y. Nakagawa, R. Ohtani, K. Sumitani, H. Setoyama, E. Kobayashi, Bull. Am. Phys. Soc. 75, 45–52 (2010)

    Google Scholar 

  9. S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, T. Hara, K. Nagayama, Jpn. J. Appl. Phys. 49, 031302 (2010). (in English)

    Article  ADS  Google Scholar 

  10. S. Al-Riyami, S. Ohmagari, T. Yoshitake, Appl. Phys. Express 3, 115102 (2010). (in English)

    Article  ADS  Google Scholar 

  11. H. Gima, A. Zkria, Y. Katamune, R. Ohtani, S. Koizumi, T. Yoshitake, Appl. Phys. Express 10, 015801 (2016)

    Article  ADS  Google Scholar 

  12. S. Ohmagari, S. Al-Riyami, T. Yoshitake, Jpn. J. Appl. Phys. 50, 5101 (2011). (in English)

    Google Scholar 

  13. S. Ohmagari, T. Hanada, Y. Katamune, S. Al-Riyami, T. Yoshitake, Jpn. J. Appl. Phys. 53, 050307 (2014). (in English)

    Article  ADS  Google Scholar 

  14. Y. Katamune, S. Takeichi, S. Ohmagari, T. Yoshitake, J. Vac. Sci. Technol., A 33, 061514 (2015). (in English)

    Article  Google Scholar 

  15. T.H. Borst, O. Weis, Phys. Stat. Sol. (A). 154, 423 (1996)

    Article  ADS  Google Scholar 

  16. W. Gajewski, P. Achatz, O.A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, J.A. Garrido, Phys. Rev. B. 79, 045206 (2009)

    Article  ADS  Google Scholar 

  17. T. Yoshitake, Y. Nakagawa, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Sumitani, Y. Agawa, K. Nagayama, Jpn. J. Appl. Phys. 49, 015503 (2010). (in English)

    Article  ADS  Google Scholar 

  18. Y. Katamune, S. Ohmagari, H. Setoyama, K. Sumitani, Y. Hirai, T. Yoshitake, ECS Trans. 50, 23 (2013)

    Article  ADS  Google Scholar 

  19. K. Kobayashi, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom. Detect. Assoc. Equip. 547, 98 (2005)

    Article  ADS  Google Scholar 

  20. Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Ishikawa, E. Ikenaga, K. Horiba, S. Shin, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, H. Nohira, T. Hattori, S. Södergren, B. Wannberg, K. Kobayashi, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom. Detect. Assoc. Equip. 547, 50 (2005)

    Article  ADS  Google Scholar 

  21. S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Nagayama, Diamond Relat. Mater. 19, 911 (2010). (in English)

    Article  ADS  Google Scholar 

  22. P.N. Vishwakarma, S.V. Subramanyam, J. Appl. Phys. 100, 113702 (2006)

    Article  ADS  Google Scholar 

  23. J.-C. Pu, S.-F. Wang, C.-L. Lin, J.C. Sung, Thin Solid Films 519, 521 (2010)

    Article  ADS  Google Scholar 

  24. M. Koos, S.H.S. Moustafa, E. Szilagyi, I. Pocsik, Diamond Relat. Mater. 8, 1919 (1999)

    Article  ADS  Google Scholar 

  25. S. Bhattacharyya, S.R.P. Silva, Thin Solid Films 482, 94 (2005). (in English)

    Article  ADS  Google Scholar 

  26. T.F. Lee, T.C. McGill, J. Appl. Phys. 46, 373 (1975)

    Article  ADS  Google Scholar 

  27. C.E. Nebel, Semicond. Sci. Technol. 18, S1 (2003). (in English)

    Article  ADS  Google Scholar 

  28. O.A. Williams, Semicond. Sci. Technol. 21, R49 (2006)

    Article  ADS  Google Scholar 

  29. P. Achatz, O.A. Williams, P. Bruno, D.M. Gruen, J.A. Garrido, M. Stutzmann, Phys. Rev. B. 74, 155429 (2006). (in English)

    Article  ADS  Google Scholar 

  30. Y. Katamune, S. Al-Riyami, S. Takeichi, T. Yoshitake, ECS Trans. 75, 45 (2017)

    Article  Google Scholar 

  31. F.R. McFeely, S.P. Kowalczyk, L. Ley, R.G. Cavell, R.A. Pollak, D.A. Shirley, Phys. Rev. B. 9, 5268 (1974). (in English)

    Article  ADS  Google Scholar 

  32. J. Schäfer, J. Ristein, R. Graupner, L. Ley, U. Stephan, T. Frauenheim, V.S. Veerasamy, G.A.J. Amaratunga, M. Weiler, H. Ehrhardt, Phys. Rev. B. 53, 7762 (1996)

    Article  ADS  Google Scholar 

  33. J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)

    Article  ADS  Google Scholar 

  34. S. Ohmagari, Y. Katamune, H. Ichinose, T. Yoshitake, Jpn. J. Appl. Phys. 51, 025503 (2012). (in English)

    ADS  Google Scholar 

  35. P. Zapol, M. Sternberg, L.A. Curtiss, T. Frauenheim, D.M. Gruen, Phys. Rev. B. 65, 045403 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS Grant-in-Aid for Special Purposes Grant Number 25. The synchrotron radiation experiments were performed at the BL47XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B1714). This work was partially supported by JSPS KAKENHI Grant Number JP13J07294, JP15H04127, and JP16K18238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yūki Katamune.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katamune, Y., Takeichi, S., Ohtani, R. et al. Electrical properties of boron-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite films. Appl. Phys. A 125, 295 (2019). https://doi.org/10.1007/s00339-019-2607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2607-8

Navigation