Applied Physics A

, 125:292 | Cite as

The effect of Ge content on photovoltaic property of flexible Cu2ZnSn(S,Se)4 thin film solar cells

  • Luanhong Sun
  • Honglie ShenEmail author
  • Hulin Huang
  • Aming Lin


Magnetron co-sputtering method followed by selenization was used for the preparation of Cu2Zn(Sn,Ge)(S,Se)4 (CZTGeSSe) thin film. The impact of Ge doping layer with different sputtering times on crystalline quality, surface roughness, band structure and device performance of CZTGeSSe absorber was systematically investigated. It was found that the increased Ge/(Ge + Sn) ratio could effectively promote the grain growth and improve the band mismatching of CZTGeSSe/CdS interface. The CZTGeSSe thin film with minimum roughness and increased CBO (− 0.54 to − 0.41 eV) was obtained with the increased Ge/(Ge + Sn) ratio of 7.3%. However, oversized grain with rougher surface could result in a non-uniform coverage phenomenon of CdS layer, leading to severe interface recombination. After optimizing the Ge/(Ge + Sn) ratio, the best device performance with an efficiency of 3.19% was achieved in flexible CZTGeSSe thin film solar cells.



The authors gratefully acknowledge National Natural Science Foundation of China (Grant no. 61774084), a project supported by the special fund of Jiangsu Province for the transformation of scientific and technological achievements (Grant no. BA2017032), the research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology (Grant no. SKLPSTKF201506) and funding of Jiangsu Innovation Program for Graduate Education (Grant no. KYCX18_0282).


  1. 1.
    S. Qiao, J.H. Liu, X.N. Niu, B.L. Liang, G.S. Fu, Z.Q. Li, S.F. Wang, K.L. Ren, C.F. Pan, Adv. Funct. Mater. 28, 1707311 (2018)CrossRefGoogle Scholar
  2. 2.
    Q. Yan, S.Y. Cheng, H.N. Li, X. Yu, J.J. Fu, Q.W. Tian, H.J. Jia, S.X. Wu, Sol. Energy 177, 508 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Marino, Y. Sánchez, M.E. Rodrıguez, X. Alcobé, H. Xie, M. Neuschitzer, I. Becerril, S. Giraldo, M. Dimitrievska, M. Placidi, L. Fourdrinier, V.I. Roca, A.P. Rodrıguez, E. Saucedoa, J. Mater. Chem. A 4, 1895 (2016)CrossRefGoogle Scholar
  4. 4.
    K.W. Brew, S.M. McLeod, S.M. Garner, R. Agrawala, Thin Solid Films 642, 110 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    R. Wuerz, A. Eicke, F. Kessler, F. Pianezzib, Sol. Energy Mater. Sol. C 130, 107 (2014)CrossRefGoogle Scholar
  6. 6.
    R. Wuerz, A. Eicke, F. Kessler, P. Rogin, O.Y. Assl, Thin Solid Films 519, 7268 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla, Thin Solid Films 431, 392 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A. Namvar, M. Dehghany, S. Sohrabpour, R. Naghdabadi, Sol. Energy 135, 366 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi-R 10, 583 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Li, X.L. Liu, H.T. Cui, S.H. Huang, X.J. Hao, J. Alloys Compd. 625, 277 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Neuschitzer, M.E. Rodriguez, M. Guc, J.A. Marquez, S. Giraldo, I. Forbes, A.P. Rodriguez, E. Saucedo, J. Mater. Chem. A 6, 11759 (2018)CrossRefGoogle Scholar
  12. 12.
    G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse, Chem. Mater. 23, 2626 (2011)CrossRefGoogle Scholar
  13. 13.
    C.J. Hages, S. Levcenco, C.K. Miskin, J.H. Alsmeier, D.A. Ras, R.G. Wilks, M. Bär, T. Unold, R. Agrawal, Prog. Photovol. Res. Appl. 23, 376 (2015)CrossRefGoogle Scholar
  14. 14.
    J.Z. Li, H.L. Shen, H.R. Shang, Y.F. Li, W.W. Wu, Mater. Lett. 190, 188 (2017)CrossRefGoogle Scholar
  15. 15.
    R.J. Sun, D.M. Zhuang, M. Zhao, Q.M. Gong, Y.W. Wei, G.A. Ren, Y.X. Wu, Sol. Energy Mater Sol. C 174, 42 (2018)CrossRefGoogle Scholar
  16. 16.
    H.F. Guo, C.H. Ma, K.Z. Zhang, X.G. Jia, Y. Li, N.Y. Yuan, J.N. Ding, Sol. Energy Mater. Sol. C 178, 146 (2018)CrossRefGoogle Scholar
  17. 17.
    Q. Guo, G.M. Ford, W.C. Yang, C.J. Hages, H.W. Hillhouse, R. Agrawal, Sol. Energy Mater. Sol. C 105, 132 (2012)CrossRefGoogle Scholar
  18. 18.
    Z.J. Zhang, L.Y. Yao, Y. Zhang, J.P. Ao, J.L. Bi, S.S. Gao, Q. Gao, M.J. Jeng, G.Z. Sun, Z.Q. Zhou, Q. He, Y. Sun, Adv. Sci. 5, 1700645 (2018)CrossRefGoogle Scholar
  19. 19.
    W.G. Zhao, D.C. Pan, S.Z. Liu, Nanoscale 8, 10160 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    O.Y. Khyzhun, V.L. Bekenev, V.A. Ocheretova, A.O. Fedorchuk, O.V. Parasyuk, Physica B 461, 75 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    W.C. Chen, C.Y. Chen, V. Tunuguntla, S.H. Lu, C.C. Su, C.H. Lee, K.H. Chen, L.C. Chenc, Nano Energy 30, 762 (2016)CrossRefGoogle Scholar
  22. 22.
    Q. Shu, J.H. Yang, S.Y. Chen, B. Huang, H.J. Xiang, X.G. Gong, S.H. Wei, Phys. Rev. B 87, 268 (2013)Google Scholar
  23. 23.
    D.B. Khadka, J.H. Kim, CrystEngComm 15, 10500 (2013)CrossRefGoogle Scholar
  24. 24.
    M. León, S. Levcenko, R. Serna, G. Gurieva, A. Nateprov, J.M. Merino, E.J. Friedrich, U. Fillat, S. Schorr, E. Arushanov, J. Appl. Phys. 108, 093502 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    S. Tajimaa, K. Kataoka, N. Takahashi, Y. Kimoto, T. Fukano, M. Hasegawa, H. Hazama, Appl. Phys. Lett. 103, 243906 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    R. Scheer, J. Appl. Phys. 105, 104505 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    A. Crovettoa, O. Hansena, Sol. Energy Mater. Sol. C 169, 177 (2017)CrossRefGoogle Scholar
  28. 28.
    W.J. Yin, Y.L. Wu, R. Noufi, M.A. Jassim, Y.F. Yan, Appl. Phys. Lett. 102, 193905 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luanhong Sun
    • 1
  • Honglie Shen
    • 1
    Email author
  • Hulin Huang
    • 2
  • Aming Lin
    • 1
  1. 1.Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations