Skip to main content
Log in

Non-linear optical properties of nanoscale elliptical ring-shaped at the presence of Rashba spin–orbit interaction and magnetic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The significant information about the properties of matter can be described with the interaction between light and matter. On this subject, the effect of the applied magnetic field and structural variation on the optical properties of elliptical and circular GaAs quantum rings at the existence of Rashba spin–orbit interaction (RSOI) have been investigated. The effective mass equation for the system containing RSOI and magnetic flux has been solved in cylindrical coordinate with Matrix Diagonalization method for circular quantum ring and with finite difference method for elliptical quantum ring. Also, the linear and third-order nonlinear optical absorption coefficient (AC) and refractive index changes (RIC) are calculated by density matrix. According to the consequence, the geometry of quantum structure plays a significant role in specifying the AC and RIC which provide the methods for fabricating effective application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Martyi, T.M. Moore, A.E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys. Rev. Lett. 60, 535 (1988)

    Article  ADS  Google Scholar 

  2. J.H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  3. S.E. Harris, Y. Yamamoto, Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  4. J. Clarke, H. Chen, W.A. van Wijngaarden, Electromagnetically induced transparency and optical switching in a rubidium cascade system. Appl. Opt. 40, 2047 (2001)

    Article  ADS  Google Scholar 

  5. A. André, M.D. Eisaman, R.L. Walsworth, A.S. Zibrov, M.D. Lukin, Quantum control of light using electromagnetically induced transparency. J. Phys. B At. Mol. Opt. Phys. 38, 589 (2005)

    Article  ADS  Google Scholar 

  6. M. Sahrai, M. Mahmoudi, The effect of an incoherent pumping on the dispersive and absorptive properties of a four-level medium. J. Phys. B At. Mol. Opt. Phys. 42, 185501 (2009)

    Article  ADS  Google Scholar 

  7. S.M. Mousavi, L. Safari, M. Mahmoudi, M. Sahrai, Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition. J. Phys. B At. Mol. Opt. Phys. 43, 165501 (2010)

    Article  ADS  Google Scholar 

  8. Y. Gu, L. Wang, K. Wang, C. Yang, Q. Gong, Coherent population trapping and electromagnetically induced transparency in a five-level M-type atom. J. Phys. B At. Mol. Opt. Phys. 39, 463 (2006)

    Article  ADS  Google Scholar 

  9. Z. Zhang, Y. Huang, P.J. Reece, Influence of GaAsSb structural properties on the optical properties of InAs/GaAsSb quantum dots. Phys. E (Amsterdam, Neth.) 94, 7 (2017)

    Article  Google Scholar 

  10. A. Zamani, F. Setareh, T. Azargoshasb, Spin–orbit coupling and applied magnetic field effects on electromagnetically induced transparency of a quantum ring at finite temperature. Superlattices Microstruct. 115, 40 (2018)

    Article  ADS  Google Scholar 

  11. G. Rezaei, S.S. Kish, B. Vaseghi, Electromagnetically induced transparency in a two-dimensional quantum dot: effects of impurity, external fields, hydrostatic pressure and temperature. Phys. E (Amsterdam, Neth.) 62, 104 (2014)

    Article  Google Scholar 

  12. A.S. Jahromi, G. Rezaei, Electromagnetically induced transparency in a two-dimensional quantum pseudo-dot system: effects of geometrical size and external magnetic field. Phys. B Condens. Matter. 456, 103 (2015)

    Article  ADS  Google Scholar 

  13. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific Publishing Company, Singapore, 2009). (chapter 22)

    Book  Google Scholar 

  14. S. Liang, W. Xie, A.H. Sarkisyan, Electronic and optical properties of a nanoring in the presence of external magnetic field. Superlattices Microstruct. 51, 868 (2012)

    Article  ADS  Google Scholar 

  15. C. Sirtori, F. Capasso, D.L. Civco, Giant, triply resonant, third-order nonlinear susceptibility χ3(ω)in coupled quantum wells. Phys. Rev. Lett. 68, 1010 (1992)

    Article  ADS  Google Scholar 

  16. S. Sauvage, P. Boucaud, F. Glotin, Third-harmonic generation in InAs/GaAs self-assembled quantum dots. Phys. Rev. B 59, 9830 (1999)

    Article  ADS  Google Scholar 

  17. G. Rezaei, S. Shojaeian Kish, Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: effects of hydrostatic pressure, external electric and magnetic fields. Superlattices Microstruct. 53, 99 (2013)

    Article  ADS  Google Scholar 

  18. S. Liang, W. Xie, H. Shen, Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect. Opt. Commun. 284, 5818 (2011)

    Article  ADS  Google Scholar 

  19. S. Gumber, M. Gambhir, P.K. Jha, Optical response of a two dimensional quantum ring in presence of Rashba spin orbit coupling. J. Appl. Phys. 119(7), 073101 (2016)

    Article  ADS  Google Scholar 

  20. Kh Shakouri, B. Szafran, M. Esmaeilzadeh, F.M. Peeters, Effective spin–orbit interaction Hamiltonian for quasi-one-dimensional quantum rings. Phys. Rev. B 85, 165314 (2012)

    Article  ADS  Google Scholar 

  21. G.A. Intronati, P.I. Tamborenea, D. Weinmann, R.A. Jalabert, Spin–orbit effects in nanowire-based wurtzite semiconductor quantum dots. Phys. Rev. B 88, 045303 (2013)

    Article  ADS  Google Scholar 

  22. D.Y. Liu, J. Xia, Spin flip in single quantum ring with Rashba spin–orbit interation. Chin. Phys. B 27, 067201 (2018)

    Article  ADS  Google Scholar 

  23. A. Zamani, T. Azargoshasb, E. Niknam, Second and third harmonic generations of a quantum ring with Rashba and Dresselhaus spin–orbit couplings: temperature and Zeeman effects. Phys. B Condens. Matter. 523, 85 (2017)

    Article  ADS  Google Scholar 

  24. A. Zamani, Th Estabar, Gh Safarpour, M. Moradi, The binding energies of a bulged GaAs nanowire. Superlattices Microstruct. 76, 66 (2014)

    Article  ADS  Google Scholar 

  25. A. Zamani, Gh Safarpour, L. Safaei, E. Niknam, M. Novzari, The linear and nonlinear optical properties of a bulged GaAs nanowire. Superlattices Microstruct. 81, 129 (2015)

    Article  ADS  Google Scholar 

  26. J.D. Cooper, A. Valavanis, Z. Ikonic, P. Harrison, J.E. Cunningham, Finite difference method for solving the Schrödinger equation with band nonparabolicity in mid-infrared quantum cascade lasers. J. Appl. Phys. 108, 113109 (2010)

    Article  ADS  Google Scholar 

  27. I. Wayan Sudiarta, D.J. Wallace Geldart, Solving the Schrödinger equation using the finite difference time domain method. J. Phys. A Math. Theor. 40, 1885 (2007)

    Article  ADS  Google Scholar 

  28. G.M. Amiraliyev, The convergence of a finite difference method on layer-adapted mesh for a singularly perturbed system. Appl. Math. Comput. 162, 102 (2005)

    MathSciNet  MATH  Google Scholar 

  29. U. Yesilgul, H. Sari, F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, I. Sökmen, Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field. J. Chem. Phys. 485, 81 (2017)

    Google Scholar 

  30. R.W. Boynd, Nonlinear Optics, vol. 1, 2nd edn. (Academic Press, Cambridge, 2003), p. 1

    Google Scholar 

  31. G. Rezaei, Z. Mousazadeh, B. Vaseghi, Nonlinear optical properties of a two-dimensional elliptic quantum dot. Phys. E (Amsterdam, Neth.) 42, 1477 (2010)

    Article  Google Scholar 

  32. E. Kasapoglu, C.A. Duque, M.E. Mora-Ramos, The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga1−xAlxAs/GaAs quantum dot under applied electric field. Phys. B Condens. Matter. 474, 15 (2015)

    Article  ADS  Google Scholar 

  33. E. Faizabadi, M. Molavi, Radius effect on the spintronic properties of a triangular network of quantum nanorings in the presence of Rashba spin–orbit interaction. Curr. Appl. Phys. 17, 207 (2017)

    Article  ADS  Google Scholar 

  34. A. Zamani, F. Setareh, T. Azargoshasb, Electronic structure and Landé g-factor of a quantum ring in the presence of spin–orbit coupling: temperature and Zeeman effect. Superlattices Microstruct. 110, 243 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sanavi Khoshnoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, E., Sanavi Khoshnoud, D. & Naeimi, A.S. Non-linear optical properties of nanoscale elliptical ring-shaped at the presence of Rashba spin–orbit interaction and magnetic field. Appl. Phys. A 125, 346 (2019). https://doi.org/10.1007/s00339-019-2601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2601-1

Navigation