Abstract
In this paper, we have demonstrated UV photodetector based on SnO2 nanowire (NW) arrays fabricated using a catalytic free and controlled growth process called glancing angle deposition technique. The fabricated SnO2 NWs were amorphous in nature with highly periodic and perpendicularly oriented structures of length ~ 160 ± 5 nm with ~ 60 ± 5 nm average diameter. The reported Au/SnO2 NW/n-Si device showed a good rectifying behavior with a rectification ratio of ~ 6 due to the formation of high-quality Schottky contact at the Au/SnO2 NW interface. The Au/SnO2 NW/n-Si device exhibited a high responsivity (0.142 A/W) and external quantum efficiency (56.8%) at − 2 V applied bias as compared to the Au/SnO2 thin-film (TF)/n-Si device. Moreover, the Au/SnO2 NW/n-Si device attained a high detectivity of 10.8 × 1010 Jones and noise equivalent power as low as 38.8 × 10−12 W. The high surface to volume ratio and the enormous amount of photogenerated carriers in case of SnO2 NW arrays made the Au/SnO2 NW/n-Si device to exhibit high photosensitivity. Furthermore, on UV illumination, the Au/SnO2 NW/n-Si detector showed fast device response with a rise time of 0.18 s and a fall time of 0.25 s. The current conduction mechanism in case of Au/SnO2 NW/n-Si device is explained with respect to device band diagram.









References
M. Mishra, A. Gundimeda, S. Krishna, N. Aggarwal, L. Goswami, B. Gahtori, B. Bhattacharyya, S. Husale, G. Gupta, ACS Omega 3, 2304–2311 (2018)
J.L. Hou, S.J. Chang, C.H. Wu, T.J. Hsueh, IEEE Electron Device Lett. 34, 1023–1025 (2013)
Z.H. Wang, H.C. Yu, C.C. Yang, H.T. Yeh, Y.K. Su, IEEE Trans. Electron Devices 64, 3206–3212 (2018)
H.Y. Liu, G.J. Liu, IEEE Trans. Electron Devices 64, 1108–1113 (2017)
X. Li, X. Xiong, Q. Zhang, Mater. Res. Express 4(045018), 1–15 (2017)
W.B.H. Othmen, Z.B. Hamed, B. Sieber, A. Addad, H. Elhouichet, R. Boukherroub, Appl. Surf. Sci. 434, 879–890 (2018)
A. Singh, A. Sharma, M. Tomar, V. Gupta, Nanotechnology 29(065502), 1–12 (2018)
P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M.G. Kohan, A.L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, A. Vomiero, Nano Energy 51, 308–316 (2018)
D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, J. Alloys Comp. 751, 56–61 (2018)
Z. Lou, X. Yang, H. Chen, Z. Liang, J. Semicond. 39(024002), 1–6 (2018)
A. Kushwaha, M. Aslam, J. Appl. Phys. 112(054316), 1–8 (2012)
E.A. Azhar, W. Ye, B. Helfrecht, G. Chen, L. Thompson, H. Yu, S. Dey, IEEE Trans. Electron Devices 65, 3291–3299 (2018)
M. Summers, M. Brett, Nanotechnology 19(415203), 1–7 (2008)
M.S. Bannur, A. Antony, K.I. Maddani, P. Poornesh, A. Rao, K.S. Choudhari, Physica E 103, 348–353 (2018)
A. Othonos, M. Zervos, D. Tsokkou, Nanoscale Res. Lett. 4, 828–833 (2009)
X.Q. Pan, L. Fu, J. Electroceram. 7, 35–46 (2001)
K. Arora, N. Goel, M. Kumar, M. Kumar, ACS Photonics 5(6), 1–25 (2018)
S. Hatch, J. Briscoe, A. Sapelkin, W. Gillin, J. Gilchrist, M. Ryan, S. Heutz, S. Dunn, J. Appl. Phys. 113(204501), 1–9 (2013)
S. Pan, Q. Liu, J. Zhao, G. Li, A.C.S. Appl, MaterInterfaces 9, 28737–28742 (2017)
Y.H. Leung, Z.B. He, L.B. Luo, C.H.A. Tsang, N.B. Wong, W.J. Zhang, S.T. Lee, Appl. Phys. Lett. 96, 05310 (2010)
W.W. Lee, J.H. Lee, S.H. Kim, D.W. Yang, W.I. Park, J. Phys. Chem. 122, 6456–6462 (2018)
M.K. Singh, R.K. Pandey, R. Prakash, Org. Electron. 50, 359–366 (2017)
B. Yin, Y. Qiu, H. Zhang, Y. Luo, Y. Zhao, D. Yang, L. Hu, Semicond. Sci. Tech. 32(064002), 1–8 (2017)
M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid-state Electron. 51, 941–949 (2007)
A.B. Yadav, A. Pandey, D. Somvanshi, S. Jit, IEEE Trans. Electron Devices 62, 1879–1884 (2015)
G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotech. 16, 49–57 (2017)
A.B. Bhise, D.J. Late, P.S. Walke, M.A. More, V.K. Pillai, I.S. Mulla, D.S. Joag, J. Cryst. Growth 307, 87–91 (2007)
S. Safa, M. Khajeh, R. Azimirad, The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures. J. Alloys Comp. 735, 1406–1413 (2018)
R.A. Rani, A.S. Zoolfakar, N.S. Khairir, M.H. Mamat, S. Alrokayan, H.A. Khan, M.R. Mahmood, J. Mater. Sci.: Mater. Electron. 29, 16765–16774 (2018)
S.J. Young, Y.H. Liu, Sens. Actuators, A 269, 363–368 (2018)
P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, W. Tang, J. Mater. Chem. C5, 10562–10570 (2017)
A.R.M. Foisal, T. Dinh, P. Tanner, H.P. Phan, T.K. Nguyen, E.W. Streed, D.V. Dao, IEEE Electron Device Lett. 39, 1219–1222 (2018)
R. Bhardwaj, P. Sharma, R. Singh, S. Mukherjee, IEEE Photonics Technology Lett. 29, 1215–1218 (2017)
Acknowledgements
The authors are thankful to NPCRE LAB, IIT Bombay for FE-SEM along with EDX facility and SAIF, NEHU for TEM analysis. The authors are also thankful to Dr. Debarun Dhar Purkayastha, Department of Physics, NIT Nagaland for providing absorption measurement facility and NIT Nagaland for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chetri, P., Dhar, J.C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector. Appl. Phys. A 125, 286 (2019). https://doi.org/10.1007/s00339-019-2590-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-019-2590-0