Skip to main content
Log in

Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector

Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we have demonstrated UV photodetector based on SnO2 nanowire (NW) arrays fabricated using a catalytic free and controlled growth process called glancing angle deposition technique. The fabricated SnO2 NWs were amorphous in nature with highly periodic and perpendicularly oriented structures of length ~ 160 ± 5 nm with ~ 60 ± 5 nm average diameter. The reported Au/SnO2 NW/n-Si device showed a good rectifying behavior with a rectification ratio of ~ 6 due to the formation of high-quality Schottky contact at the Au/SnO2 NW interface. The Au/SnO2 NW/n-Si device exhibited a high responsivity (0.142 A/W) and external quantum efficiency (56.8%) at − 2 V applied bias as compared to the Au/SnO2 thin-film (TF)/n-Si device. Moreover, the Au/SnO2 NW/n-Si device attained a high detectivity of 10.8 × 1010 Jones and noise equivalent power as low as 38.8 × 10−12 W. The high surface to volume ratio and the enormous amount of photogenerated carriers in case of SnO2 NW arrays made the Au/SnO2 NW/n-Si device to exhibit high photosensitivity. Furthermore, on UV illumination, the Au/SnO2 NW/n-Si detector showed fast device response with a rise time of 0.18 s and a fall time of 0.25 s. The current conduction mechanism in case of Au/SnO2 NW/n-Si device is explained with respect to device band diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M. Mishra, A. Gundimeda, S. Krishna, N. Aggarwal, L. Goswami, B. Gahtori, B. Bhattacharyya, S. Husale, G. Gupta, ACS Omega 3, 2304–2311 (2018)

    Article  Google Scholar 

  2. J.L. Hou, S.J. Chang, C.H. Wu, T.J. Hsueh, IEEE Electron Device Lett. 34, 1023–1025 (2013)

    Article  ADS  Google Scholar 

  3. Z.H. Wang, H.C. Yu, C.C. Yang, H.T. Yeh, Y.K. Su, IEEE Trans. Electron Devices 64, 3206–3212 (2018)

    Article  ADS  Google Scholar 

  4. H.Y. Liu, G.J. Liu, IEEE Trans. Electron Devices 64, 1108–1113 (2017)

    Article  ADS  Google Scholar 

  5. X. Li, X. Xiong, Q. Zhang, Mater. Res. Express 4(045018), 1–15 (2017)

    ADS  Google Scholar 

  6. W.B.H. Othmen, Z.B. Hamed, B. Sieber, A. Addad, H. Elhouichet, R. Boukherroub, Appl. Surf. Sci. 434, 879–890 (2018)

    Article  ADS  Google Scholar 

  7. A. Singh, A. Sharma, M. Tomar, V. Gupta, Nanotechnology 29(065502), 1–12 (2018)

    Google Scholar 

  8. P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M.G. Kohan, A.L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, A. Vomiero, Nano Energy 51, 308–316 (2018)

    Article  Google Scholar 

  9. D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, J. Alloys Comp. 751, 56–61 (2018)

    Article  Google Scholar 

  10. Z. Lou, X. Yang, H. Chen, Z. Liang, J. Semicond. 39(024002), 1–6 (2018)

    Google Scholar 

  11. A. Kushwaha, M. Aslam, J. Appl. Phys. 112(054316), 1–8 (2012)

    Google Scholar 

  12. E.A. Azhar, W. Ye, B. Helfrecht, G. Chen, L. Thompson, H. Yu, S. Dey, IEEE Trans. Electron Devices 65, 3291–3299 (2018)

    Article  ADS  Google Scholar 

  13. M. Summers, M. Brett, Nanotechnology 19(415203), 1–7 (2008)

    Google Scholar 

  14. M.S. Bannur, A. Antony, K.I. Maddani, P. Poornesh, A. Rao, K.S. Choudhari, Physica E 103, 348–353 (2018)

    Article  ADS  Google Scholar 

  15. A. Othonos, M. Zervos, D. Tsokkou, Nanoscale Res. Lett. 4, 828–833 (2009)

    Article  ADS  Google Scholar 

  16. X.Q. Pan, L. Fu, J. Electroceram. 7, 35–46 (2001)

    Article  Google Scholar 

  17. K. Arora, N. Goel, M. Kumar, M. Kumar, ACS Photonics 5(6), 1–25 (2018)

    Article  Google Scholar 

  18. S. Hatch, J. Briscoe, A. Sapelkin, W. Gillin, J. Gilchrist, M. Ryan, S. Heutz, S. Dunn, J. Appl. Phys. 113(204501), 1–9 (2013)

    Google Scholar 

  19. S. Pan, Q. Liu, J. Zhao, G. Li, A.C.S. Appl, MaterInterfaces 9, 28737–28742 (2017)

    Google Scholar 

  20. Y.H. Leung, Z.B. He, L.B. Luo, C.H.A. Tsang, N.B. Wong, W.J. Zhang, S.T. Lee, Appl. Phys. Lett. 96, 05310 (2010)

    Article  Google Scholar 

  21. W.W. Lee, J.H. Lee, S.H. Kim, D.W. Yang, W.I. Park, J. Phys. Chem. 122, 6456–6462 (2018)

    Google Scholar 

  22. M.K. Singh, R.K. Pandey, R. Prakash, Org. Electron. 50, 359–366 (2017)

    Article  Google Scholar 

  23. B. Yin, Y. Qiu, H. Zhang, Y. Luo, Y. Zhao, D. Yang, L. Hu, Semicond. Sci. Tech. 32(064002), 1–8 (2017)

    Google Scholar 

  24. M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid-state Electron. 51, 941–949 (2007)

    Article  ADS  Google Scholar 

  25. A.B. Yadav, A. Pandey, D. Somvanshi, S. Jit, IEEE Trans. Electron Devices 62, 1879–1884 (2015)

    Article  ADS  Google Scholar 

  26. G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotech. 16, 49–57 (2017)

    Article  Google Scholar 

  27. A.B. Bhise, D.J. Late, P.S. Walke, M.A. More, V.K. Pillai, I.S. Mulla, D.S. Joag, J. Cryst. Growth 307, 87–91 (2007)

    Article  ADS  Google Scholar 

  28. S. Safa, M. Khajeh, R. Azimirad, The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures. J. Alloys Comp. 735, 1406–1413 (2018)

    Article  Google Scholar 

  29. R.A. Rani, A.S. Zoolfakar, N.S. Khairir, M.H. Mamat, S. Alrokayan, H.A. Khan, M.R. Mahmood, J. Mater. Sci.: Mater. Electron. 29, 16765–16774 (2018)

    Google Scholar 

  30. S.J. Young, Y.H. Liu, Sens. Actuators, A 269, 363–368 (2018)

    Article  Google Scholar 

  31. P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, W. Tang, J. Mater. Chem. C5, 10562–10570 (2017)

    Google Scholar 

  32. A.R.M. Foisal, T. Dinh, P. Tanner, H.P. Phan, T.K. Nguyen, E.W. Streed, D.V. Dao, IEEE Electron Device Lett. 39, 1219–1222 (2018)

    Article  ADS  Google Scholar 

  33. R. Bhardwaj, P. Sharma, R. Singh, S. Mukherjee, IEEE Photonics Technology Lett. 29, 1215–1218 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to NPCRE LAB, IIT Bombay for FE-SEM along with EDX facility and SAIF, NEHU for TEM analysis. The authors are also thankful to Dr. Debarun Dhar Purkayastha, Department of Physics, NIT Nagaland for providing absorption measurement facility and NIT Nagaland for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Chandra Dhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetri, P., Dhar, J.C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector. Appl. Phys. A 125, 286 (2019). https://doi.org/10.1007/s00339-019-2590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2590-0

Navigation