Applied Physics A

, 125:283 | Cite as

X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method

  • M. S. Abd El-Sadek
  • H. S. WaslyEmail author
  • Khalid Mujasam Batoo


Cadmium sulfide (CdS) nanoparticles were prepared by hydrothermal method at 150 °C under different reaction times. It was found that hydrothermal method is an effective, quick, and eco-friendly method to synthesis CdS nanoparticles of hexagonal structure at lower temperature. X-ray peak profile analysis by Williamson–Hall analysis and size–strain plot was employed to estimate the crystallite size and lattice strain of the synthesized CdS nanoparticles and to investigate their effects on the peak broadening. The values of strain, stress and energy density were determined for all XRD peaks of wurtzite hexagonal phase of CdS, by applying various forms of Williamson–Hall procedure, such as UDM (uniform deformation model), USDM (uniform stress deformation model) and UDEDM (uniform deformation energy density model). The obtained results indicate that the crystallite size of CdS nanoparticles estimated from Scherrer equation, Williamson–Hall plots and size–strain plot, are nearly similar and in the range of 14–37 nm. CdS nanoparticles were also investigated using high-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red spectroscopy (FT-IR), and UV–visible and fluorescence spectroscopy. A dependence of the band gap and the nanoparticle size on the reaction time was reported.



The authors would like to express their gratitude to Al-Azhar University and South Valley University for providing administrative and technical support. Author K.M. Batoo is thankful to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project No. RG-1437-030.


  1. 1.
    L. Liu, H. Song, L. Fan, F. Wang, R. Qin, B. Dong, H. Zhao, X. Ren, G. Pan, X. Bai, Q. Dai, Inorganic–organic hybrid semiconductor nanomaterials:(ZnSe) (N2H4) x (C5H5 N) y. Mater. Res. Bull. 44(6), 1385–1391 (2009)Google Scholar
  2. 2.
    V. Singh, P.K. Sharma, P. Chauhan, Synthesis of CdS nanoparticles with enhanced optical properties. Mater. Charact. 62(1), 43–52 (2011)Google Scholar
  3. 3.
    P. Kumar, Directed self-assembly: expectations and achievements. Nanoscale Res. Lett. 5(9), 1367 (2010)ADSGoogle Scholar
  4. 4.
    R. Seoudi, A.A. Shabaka, M. Kamal, E.M. Abdelrazek, W. Eisa, Dependence of spectroscopic and electrical properties on the size of cadmium sulfide nanoparticles. Physica E 1(45), 47–55 (2012)ADSGoogle Scholar
  5. 5.
    S.G. Hickey, D.J. Riley, Photoelectrochemical studies of CdS nanoparticle-modified electrodes. J. Phys. Chem. B 103(22), 4599–4602 (1999)Google Scholar
  6. 6.
    D. Zhang, Y. Chen, H. Pang, Y. Yu, H. Ma, Enhanced electrochromic performance of a vanadium-substituted tungstophosphate based on composite film by incorporation of cadmium sulfide nanoparticles. Electrochim. Acta 30(105), 560–568 (2013)Google Scholar
  7. 7.
    S.N. Ding, J.J. Xu, D. Shan, B.H. Gao, H.X. Yang, Y.M. Sun, S. Cosnier, Electrochromic response and electrochemiluminescence of CdS nanocrystals thin film in aqueous solution. Electrochem. Commun. 12(5), 713–716 (2010)Google Scholar
  8. 8.
    Y. Li, Y.L. Song, F.Q. Zhou, P.F. Ji, M.L. Tian, M.L. Wan, H.C. Huang, X.J. Li, Photovoltaic properties of CdS/Si multi-interface nanoheterojunction with incorporation of Cd nanocrystals into the interface. Mater. Lett. 1(164), 539–542 (2016)Google Scholar
  9. 9.
    S. Muruganandam, G. Anbalagan, G. Murugadoss, Structural, electrochemical and magnetic properties of codoped (Cu, Mn) CdS nanoparticles with surfactant PVP. Optik-Int. J. Light Electron Opt. 1(131), 826–837 (2017)Google Scholar
  10. 10.
    C.V. Reddy, S.P. Vattikuti, J. Shim, Synthesis, structural and optical properties of CdS nanoparticles with enhanced photocatalytic activities by photodegradation of organic dye molecules. J. Mater. Sci.: Mater. Electron. 27(8), 7799–7808 (2016)Google Scholar
  11. 11.
    S.S. Warule, N.S. Chaudhari, R.T. Shisode, K.V. Desa, B.B. Kale, M.A. More, Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour. Cryst Eng Comm. 17(1), 140–148 (2015)Google Scholar
  12. 12.
    Y. Li, L. Gao, Y.L. Song, X.C. Xue, P.F. Ji, F.Q. Zhou, X.J. Li, CdS nanowires array on Cd foil: synthesis and optical properties. Mater. Lett. 15(139), 126–129 (2015)Google Scholar
  13. 13.
    Z. Yang, L. Lu, V.F. Berard, Q. He, C.J. Kiely, B.W. Berger, S. McIntosh, Biomanufacturing of CdS quantum dots. Green Chem. 17(7), 3775–3782 (2015)Google Scholar
  14. 14.
    G.B. Shombe, E.B. Mubofu, S. Mlowe, N. Revaprasadu, Synthesis and characterization of castor oil and ricinoleic acid capped CdS nanoparticles using single source precursors. Mater. Sci. Semicond. Process. 1(43), 230–237 (2016)Google Scholar
  15. 15.
    K. Venkateswarlu, A.C. Bose, N. Rameshbabu, X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B 405(20), 4256–4261 (2010)ADSGoogle Scholar
  16. 16.
    V.S. Kumar, K.V. Rao, X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J. Nano Electron. Phys. 5(2), 2026–2031 (2013)Google Scholar
  17. 17.
    P.G. Sanders, A.B. Witney, J.R. Weertman, R.Z. Valiev, R.W. Siegel, Residual stress, strain and faults in nanocrystalline palladium and copper. Mater. Sci. Eng., A 204(1–2), 7–11 (1995)Google Scholar
  18. 18.
    B.E. Warren, B.L. Averbach, The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21(6), 595–599 (1950)ADSGoogle Scholar
  19. 19.
    P. Mishra, R.S. Yadav, A.C. Pandey, Starch assisted sonochemical synthesis of flower-like ZnO nanostructure. Dig. J. Nanomater. Biostruct. (DJNB) 4(1), 193–198 (2009)Google Scholar
  20. 20.
    K. Ramakanth, Basics of X-ray diffraction and its application (I.K. International Publishing House Pvt. Ltd., New Delhi, 2007)Google Scholar
  21. 21.
    A.E. Mahmoud, H.S. Wasly, M.A. Doheim, Studies of crystallite size and lattice strain in al-al2o3 powders produced by high-energy mechanical milling. J. Eng. Sci. 42, 1430–1439 (2014)Google Scholar
  22. 22.
    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1(1), 22–31 (1953)Google Scholar
  23. 23.
    J.I. Langford, A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Crystallogr. 11(1), 10–14 (1978)Google Scholar
  24. 24.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, New York, 2001)Google Scholar
  25. 25.
    P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)ADSGoogle Scholar
  26. 26.
    C. Suryanarayana, N. Grant, A practical approach (Plenum Press, New York, 1998)Google Scholar
  27. 27.
    M. Mhadhbi, M. Khitouni, M. Azabou, A. Kolsi, Characterization of Al and Fe nanosized powders synthesized by high energy mechanical milling. Mater. Charact. 59(7), 944–950 (2008)Google Scholar
  28. 28.
    S. Rohilla, S. Kumar, P. Aghamkar, S. Sunder, A. Agarwal, Investigations on structural and magnetic properties of cobalt ferrite/silica nanocomposites prepared by the coprecipitation method. J. Magnet. Magnet. Mater. 323(7), 897–902 (2011)ADSGoogle Scholar
  29. 29.
    B.A. Sarsfield, M. Davidovich, S. Desikan, M. Fakes, S. Futernik, J.L. Hilden, J.S. Tan et al. Powder X-ray diffraction detection of crystalline phases in amorphous pharmaceuticals. JCPDS-International Centre for Diffraction Data. ISSN 1097-0002 (2006)Google Scholar
  30. 30.
    V.D. Mote, Y. Purushotham, B.N. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)ADSGoogle Scholar
  31. 31.
    H.S. Wasly, M.A. El-Sadek, M. Henini, Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Appl. Phys. A 124(1), 76 (2018)ADSGoogle Scholar
  32. 32.
    M.J. Chithra, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metallurgica Sinica (English Letters). 28(3), 394–404 (2015)Google Scholar
  33. 33.
    A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloy. Compd. 509(17), 5349–5355 (2011)Google Scholar
  34. 34.
    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149(43–44), 1919–1923 (2009)ADSGoogle Scholar
  35. 35.
    C.S. Barret, T.B. Massalski, Structure of metals (Pergamon Press, Oxford, 1980)Google Scholar
  36. 36.
    T. Pandiyarajan, B. Karthikeyan, Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles. J. Nanopart. Res. 14(1), 647 (2012)ADSGoogle Scholar
  37. 37.
    D. Balzar, H. Ledbetter, Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26(1), 97–103 (1993)Google Scholar
  38. 38.
    J.F. Nye, Physical properties of crystals: their representation by tensors and matrices (Oxford University Press, Oxford, 1985)zbMATHGoogle Scholar
  39. 39.
    J. Shen, S. Johnston, S. Shang, T. Anderson, Calculated strain energy of hexagonal epitaxial thin films. J. Cryst. Growth 240(1–2), 6–13 (2002)ADSGoogle Scholar
  40. 40.
    D.I. Bolef, N.T. Melamed, M. Menes, Elastic constants of hexagonal cadmium sulfide. J. Phys. Chem. Solids 17(1–2), 143–148 (1960)ADSGoogle Scholar
  41. 41.
    R.G. Solanki, P. Rajaram, P.K. Bajpai, Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis. Indian J. Phys. 92(5), 595–603 (2018)ADSGoogle Scholar
  42. 42.
    P.P. Chandra, A. Mukherjee, P. Mitra, Synthesis of nanocrystalline CdS by SILAR and their characterization. J. Mater. (2014). Google Scholar
  43. 43.
    N. Kumar, L.P. Purohit, Y.C. Goswami, Spin coating of highly luminescent Cu doped CdS nanorods and their optical structural characterizations. Chalcogenide Lett. 12(6), 333–338 (2015)Google Scholar
  44. 44.
    Y. Thangam, R. Anitha, Surface sol-gel synthesis of cadmium sulfide fine particles in silica matrix. J. Res. Nanobiotechnol. 1(1), 14–18 (2012)Google Scholar
  45. 45.
    K. Deka, M.P. Kalita, Microstructure analysis of chemically synthesized wurtzite-type CdS nanocrystals. Pramana 86(5), 1119–1126 (2016)ADSGoogle Scholar
  46. 46.
    J. Zang, G. Zhao, G. Han, Preparation of CdS nanoparticles by hydrothermal method in microemulsion. Front. Chem. China 2(1), 98–101 (2007)Google Scholar
  47. 47.
    S.E. Haque, B. Ramdas, N. Padmavathy, A. Sheela, Facile one-pot low-temperature solid-state approach towards phase transformation of nano CdS. Micro Nano Lett. 9(10), 731–735 (2014)Google Scholar
  48. 48.
    L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, R. Jayavel, Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomater. Nanotechnol. 18(1), 17 (2011)Google Scholar
  49. 49.
    M. Atif, W.A Farooq, M.A. El sadek, H.S. El Sheshtawy, I.S. Yahia. Study of the interaction between mercaptoacetic acid (MAA) capped CdS quantum dots with denatured bovine serum albumin (dBSA). Chalcogenide Lett. 12(3), 91–97 (2015).Google Scholar
  50. 50.
    S.R. Dhage, H.A. Colorado, H.T. Hahn, Photoluminescence properties of thermally stable highly crystalline CdS nanoparticles. Mater. Res. 16(2), 504–507 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanomaterials Lab, Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Mining, Metallurgy and Petroleum Engineering Department, Faculty of EngineeringAl-Azhar UniversityQenaEgypt
  3. 3.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations