Skip to main content
Log in

High optical quality cellulose thin films grown from raw natural cotton by pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Raw natural cotton harvested in the fields of Thessaly, Central Greece, was used to grow high optical quality, highly durable cellulose thin films by pulsed laser deposition, using 193 nm ArF laser pulses. Standard pulsed laser deposition conditions at room temperature were applied and raw, unprocessed, natural cotton targets were used. The semi-crystalline cellulose of natural cotton converts to very durable solid films that are fully transparent in the visible wavelength range and exhibit amorphous structure. Thin film quality and surface morphology are parametrically investigated and show a strong dependence on laser fluence. Films deposited at the lowest fluence levels ~ 5 mJ/cm2 on target, close to the observed ablation threshold, exhibit roughness of ~ 1.7 nm rms. The high optical quality of the grown biocompatible cellulose materials proves the unique capacities of laser deposition and processing methods and promise novel biophotonics and other interdisciplinary applications for the health and safety of the citizen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Niegelhell, M. Sübenbacher, J. Sattelkow, H. Plank, Y. Wang, K. Zhang, S. Pirk, How bound and free fatty acids in cellulose films impact nonspecific protein adsorption. Biomacromolecules 18, 4224 (2017)

    Google Scholar 

  2. M.J. Bonne, K.J. Edler, J.G. Buchanan, D. Wolverson, E. Psillakis, M. Helton, W. Thielemans, F. Marken, Thin film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosan. J. Phys. Chem. C 112, 2660 (2008)

    Google Scholar 

  3. J.C. Courtenay, M.A. Johns, F. Galembeck, C. Deneke, E.M. Lanzoni, C.A. Costa, J.L. Scott, R.I. Sharma, Surface modified cellulose scaffolds for tissue engineering. Cellulose 24, 253 (2017)

    Google Scholar 

  4. A. Petritz, A. Wolfberger, A. Fian, M. Irimia-Vladu, A. Haase, H. Gold, T. Rothlander, T. Griesser, B. Stadlober, Cellulose as biodegradable high-k dielectric layer in organic complementary inverters. Appl. Phys. Lett. 103, 153303 (2013)

    ADS  Google Scholar 

  5. J. Pang, X. Liu, X. Zhang, Y. Wu, R. Sun, Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Materials 6, 1270 (2013)

    ADS  Google Scholar 

  6. R. Kargl, T. Mohan, V. Ribitsch, B. Saake, J. Puls, K. Kleinschek, Cellulose thin films from ionic liquid solutions. Nord. Pulp Pap. Res. J. 30, 6 (2015)

    Google Scholar 

  7. D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, D.M. Bubb, P.K. Wu, B.R. Ringeisen, Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553 (2003)

    Google Scholar 

  8. V. Karoutsos, F. Gontad, S. Kantarelis, A. Lorusso, A. Perrone, N.A. Vainos, Labyrinthine and dendritic patterns in polyethylene oxide films grown by pulsed laser deposition. Appl. Phys. A 123, 270 (2017)

    ADS  Google Scholar 

  9. E. Süske, T. Scharf, H.-U. Krebs, E. Panchenko, T. Junkers, M. Egorov, M. Buback, H. Kijewski, Tuning of cross-linking and mechanical properties of laser deposited poly(methyl methacrylate) films. J. Appl. Phys. 97, 63501 (2005)

    Google Scholar 

  10. E. Axente, F. Sima, C. Ristoscu, N. Mihailescu, I.N. Mihailescu, in Recent Advances in Biopolymers, ed. by F.K. Perveen. Biopolymer Thin Films Synthesized by Advanced Pulsed Laser Techniques, chap 4 (INTECH, 2016), p. 72. https://doi.org/10.5772/61734, https://www.intechopen.com/books

    Google Scholar 

  11. D. Predoi, C.S. Ciobanu, M. Radu, M. Costache, A. Dinischiotu, C. Popescu, E. Axente, I.N. Mihailescu, E. Gyorgy, Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications. Mater. Sci. Eng. C 32, 296 (2012)

    Google Scholar 

  12. R. Cristescu, G. Dorcioman, C. Ristoscu, E. Axente, S. Grigorescu, A. Moldovan, I.N. Mihailescu, T. Kocourek, M. Jelinek, M. Albulescu, T. Buruiana, D. Mihaiescu, I. Stamatin, D.B. Chrisey, Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Appl. Surf. Sci. 13, 4647 (2006)

    ADS  Google Scholar 

  13. F. Sima, E. CanseverMutlu, M.S. Eroglu, L.E. Sima, N. Serban, C. Ristoscu, S.M. Petrescu, E.T. Oner, I.N. Mihailescu, Levan nanostructured thin films by MAPLE assembling. Biomacromolecules 12, 2251 (2011)

    Google Scholar 

  14. V. Karoutsos, I. Koutselas, P. Orfanou, Th Mpatzaka, M. Vasileiadis, A. Vassilakopoulou, N.A. Vainos, A. Perrone, One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition. Appl. Phys. A 120, 707 (2015)

    ADS  Google Scholar 

  15. A.C. Cefalas, E. Sarantopoulou, Z. Kollia, Efficient removal of foxing from a medieval Ptolemaic map using a molecular fluorine laser at 157 nm. Appl. Phys. A 73, 571 (2001)

    ADS  Google Scholar 

  16. E. Kontturi, M. Suchy, P. Penttila, B. Jean, K. Pirkkalainen, M. Torkkeli, R. Serimaa, Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12, 770 (2011)

    Google Scholar 

  17. D.V. Parikh, D.P. Thibodeaux, B. Condon, X-ray crystallinity of bleached and cross linked cottons. Text. Res. J. 77, 612 (2007)

    Google Scholar 

  18. J. Martinez Urreaga, M.U. de la Orden, Chemical interactions and yellowing in chitosan-treated cellulose. Eur. Polym. J. 42, 2606 (2006)

    Google Scholar 

  19. Z. Tang, W. Li, X. Lin, H. Xiao, Q. Miao, L. Huang, L. Chen, H. Wu, TEMPO-oxidized cellulose with high degree of oxidation. Polymers 9, 421 (2017)

    Google Scholar 

  20. T. Łojewski, P. Miskowiec, M. Missori, A. Lubanska, L.M. Proniewicz, J. Łojewska, FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations. Carbohydr. Polym. 82, 370 (2010)

    Google Scholar 

  21. J. Kolar, M. Strlic, S. Pentzien, W. Kautek, Near-UV visible and IR pulsed laser light interaction with cellulose. Appl. Phys. A 71, 87 (2000)

    ADS  Google Scholar 

  22. N.V. Ivanova, E.A. Korolenko, E.V. Korolik, R.G. Zbankov, Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii 51, 301 (1989)

    Google Scholar 

  23. M. Schwanninger, J.C. Rodrigues, H. Pereira, B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36, 23 (2004)

    Google Scholar 

  24. F. Mizi, D. Dai, B. Huang, in Fourier Transform—Materials Analysis, ed. by S. Salih. Fourier Transform Infrared Spectroscopy for Natural Fibres, chap 3 (INTECH, 2012), p. 45. https://doi.org/10.5772/35482, https://www.intechopen.com/books/

    Google Scholar 

  25. E.P. Kalutskaya, S.S. Gusev, An infrared spectroscopic investigation of the hydration of cellulose. Polym. Sci. USSR 22, 550 (1981)

    Google Scholar 

  26. C.Y. Liang, R.H. Marchessault, Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polym. Sci. 37, 385 (1959)

    ADS  Google Scholar 

  27. C. Chung, M. Lee, E.K. Choe, Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58, 417 (2004)

    Google Scholar 

  28. M. Ibrahim, M. Alaam, H. El-Haes, A.F. Jalbouta, A. de Leon, Analysis of the structure and vibrational spectra of glucose and fructose. Eclet. Quim. 31, 15 (2006)

    Google Scholar 

  29. S.Y. Oh, D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W. Ho Park, J.H. Youk, Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340, 2376 (2005)

    Google Scholar 

  30. B. Hinterstoisser, M. Akerholm, L. Salmen, Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr. Res. 27, 334 (2001)

    Google Scholar 

  31. O. Anjos, M.G. Campos, P.C. Ruiz, P. Antunes, Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 169, 218 (2015)

    Google Scholar 

  32. Y. Marechal, H. Chanzy, The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J. Mol. Struct. 523, 183 (2000)

    ADS  Google Scholar 

  33. M.L. Nelson, R.T. O’Connor, Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and amorphous cellulose. J. Appl. Polym. Sci. 8, 1311 (1964)

    Google Scholar 

  34. D. Ciolacu, F. Ciolacu, V.I. Popa, Amorphous cellulose—structure and characterization. Cellul. Chem. Technol. 45, 13 (2011)

    Google Scholar 

  35. V. Librando, Z. Minniti, S. Lorusso, Ancient and modern paper characterization by FTIR and micro-Raman spectroscopy. Conversat. Sci. Cult. Herit. 11, 249 (2013)

    Google Scholar 

  36. K. Murugesh Babu, M. Selvadass, R. Somashekar, Characterization of the conventional and organic cotton fibres. J. Text. Inst. 104, 1101 (2013)

    Google Scholar 

  37. J. Zhou, L. Zhang, H. Shu, F. Chen, Regenerated cellulose films from NaOH/urea aqueous solution by coagulating with sulfuric acid. J. Macromol. Sci. Phys. B 41, 1 (2002)

    ADS  Google Scholar 

  38. F. Carrillo, X. Colom, J.J. Sunol, J. Saurina, Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur. Polym. J. 40, 2229 (2004)

    Google Scholar 

  39. K. Mizoguchi, M. Ishikawa, S. Ohkubo, A. Yamamoto, A. Ouchi, M. Sakuragi, T. Ito, O. Sugiyama, Laser surface treatment of regenerated cellulose fiber. Compos. Interfaces 7, 497 (2001)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support of this work by the project “HELLAS-CH.” (MIS 5002735) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagelis Karoutsos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karoutsos, V., Raptis, P., Bagiokis, E. et al. High optical quality cellulose thin films grown from raw natural cotton by pulsed laser deposition. Appl. Phys. A 125, 268 (2019). https://doi.org/10.1007/s00339-019-2569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2569-x

Navigation