Applied Physics A

, 125:255 | Cite as

A new type of coherent electromagnetic radiation source based on interference effect between forward and backward waves in an active metamaterial slab

  • Jiangwei ChenEmail author
  • Huimin Zhao
  • Lin Yan
  • Yuyao Dai


In this paper, we shall show first that both reflection and transmission can be significantly amplified when a beam of electromagnetic wave is normally incident into an active (even lossy) metamaterial slab with near-zero-real-part-of-impedance, which is attributed to effect of interference between forward and backward waves in the slab. Then we demonstrate that extended steady electromagnetic waves can be achieved using a double-slab structure, which may be applied to generate coherent electromagnetic wave with very narrow frequency band and very low divergence angle. This work provides feasible scheme to construct a new type of source of coherent electromagnetic radiation based on new physical mechanism.



We acknowledge support from Open project of National Laboratory of Solid State Microstructures (M29001).


  1. 1.
    D. Bertram, M. Born, T. Jüstel, Incoherent Light Sources. Springer Handbook of Lasers and Optics (Springer, New York, 2007)Google Scholar
  2. 2.
    J.P. Gordon, H.J. Zeiger, C.H. Townes, Phys. Rev. 99, 1264 (1955)ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Schawlow, C.H. Towensm, Phys. Rev. 112, 1940 (1958)ADSCrossRefGoogle Scholar
  4. 4.
    T.H. Maiman, Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  5. 5.
    A. Einstein, Phys. Z. 18, 121 (1917)Google Scholar
  6. 6.
    O. Svelto, Principles of Lasers (Springer, Berlin, 1998)CrossRefGoogle Scholar
  7. 7.
    A. Pusch, S. Wuestner, J.M. Hamm, K.L. Tsakmakidis, O. Hess, ACS Nano 6, 2420 (2012)CrossRefGoogle Scholar
  8. 8.
    R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Phys. Rev. Lett. 9, 366 (1962)ADSCrossRefGoogle Scholar
  9. 9.
    M.C. Cassidy, A. Bruno, S. Rubbert, M. Irfan, J. Kammhuber, R.N. Schouten, A.R. Akhmerov, L.P. Kouwenhoven, Science 355, 939 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    C.J. Koester, IEEE J. Quantum Electron. QE-2, 580 (1966)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Lebedev, V.M. Volkov, B.Ya. Kogan, Opt. Spectrosc. 35, 976565 (1973)Google Scholar
  12. 12.
    J. Fan, A. Dogariu, L.J. Wang, Opt. Express 11, 299 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    K.J. Willis, J.B. Schneider, S.C. Hagness, Opt. Express 16, 1903 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    J. Skaar, Phys. Rev. E 73, 026605 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Chen, L.L. Zhu, G.X. Yuan, Z.K. Tao, Eur. Phys. J. D 71, 26 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Chen, G.X. Yuan, Z.K. Tao, Opt. Commun. 402, 502 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    N. Sun, J.W. Chen, D.M. Tang, Eur. Phys. J. D 69, 219 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, IEEE Trans. Microw. Theory Tech. 50, 2702 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    T. Jiang, K. Chang, L.M. Si, L. Ran, H. Xin, Phys. Rev. Lett. 107, 205503 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    L.D. Landau, E.M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiangwei Chen
    • 1
    • 2
    • 3
    Email author
  • Huimin Zhao
    • 1
  • Lin Yan
    • 1
  • Yuyao Dai
    • 1
  1. 1.College of Electronic and Optical EngineeringNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  3. 3.Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceNanjingPeople’s Republic of China

Personalised recommendations