Applied Physics A

, 125:311 | Cite as

Pulsed laser deposition of gold thin films with long-range spatial uniform SERS activity

  • C. Zanchi
  • A. Lucotti
  • M. Tommasini
  • M. Pistaffa
  • L. Giuliani
  • S. TrussoEmail author
  • P. M. Ossi


Nanostructured gold thin films deposited by pulsed laser ablation show remarkable plasmonic properties and can be used as sensors based on surface-enhanced Raman scattering. The substrates are deposited onto \(1\,\times \,1\,\hbox {cm}^2\) inert supports and show a uniform morphology along that area. On the contrary, we observe a considerable dependence of the film surface morphology and plasmonic response on its position on the substrate holder. This is due to the high directionality of the species emitted in the ablation process. By keeping the substrate holder rotating in an off-axis configuration, a uniform film performance can be obtained, minimizing the differences in the plasmonic properties of the deposited films. A model of the geometry of the deposition set-up captures the details of the process and gives indications to improve the uniformity of the plasmonic properties from sample to sample. The SERS performance of the produced films was assessed with the new anti-epileptic drug perampanel.



  1. 1.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)Google Scholar
  2. 2.
    P.R. Willmott, J.R. Huber, Pulsed laser vaporization and deposition. Rev. Mod. Phys. 72, 315–328 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 33, 23–31 (2004)CrossRefGoogle Scholar
  4. 4.
    N. Arnold, J. Gruber, J. Heitz, Spherical expansion of the vapor plume into ambient gas: an analytical model. Appl. Phys. A. 69, S87–S93 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    N.R. Agarwal, P.M. Ossi, S. Trusso, Driving electromagnetic field enhancements in tailored gold surface nanostructures: optical properties and macroscale simulations. Appl. Surf. Sci. 466, 19–27 (2019)ADSCrossRefGoogle Scholar
  6. 6.
    P.M. Ossi, N.R. Agarwal, E. Fazio, F. Neri, S. Trusso, Laser-mediated nanoparticle synthesis and self-assembling, in Laser in Materials Science, ed. by M. Castillejo, Chap. 8, (Springer, Heidelberg, 2014), pp. 175–212CrossRefGoogle Scholar
  7. 7.
    C. D’Andrea, F. Neri, P.M. Ossi, N. Santo, S. Trusso, The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology 20, 245606 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    E. Fazio, C. D’Andrea, F. Neri, P.M. Ossi, N. Santo, S. Trusso, SERS activity of pulsed laser ablated silver thin films with controlled nanostructure. J. Raman Spectrosc. 42, 1298–1304 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    N.R. Agarwal, F. Neri, S. Trusso, A. Lucotti, P.M. Ossi, Au nanoparticle arrays produced by pulsed laser deposition for surface enhanced Raman spectroscopy. Appl. Surf. Sci. 58, 9148–9152 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Photoluminescence from gas-suspended SiO\(_x\) nanoparticles synthesized by laser ablation. Appl. Phys. Lett. 73, 438–440 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bailini, P.M. Ossi, Expansion of an ablation plume in a buffer gas and cluster growth. EPL 79, 35002 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    P.M. Ossi, A. Bailini, Cluster growth in an ablation plume propagating through a buffer gas. Appl. Phys. A 93, 645–650 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    F. Neri, P.M. Ossi, S. Trusso, Cluster synthesis and assembling in laser-generated plasmas. La Rivista del Nuovo Cimento 34, 103–149 (2011)Google Scholar
  14. 14.
    V. Amendola, R. Pilot, M. Frasconi, O.M. Maragó, M.A. Iatí, Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 29, 2030002 (2017)CrossRefGoogle Scholar
  15. 15.
    E. Fazio, F. Neri, P.M. Ossi, N. Santo, S. Trusso, Growth process of nanostructured silver films pulsed laser ablated in high-pressure inert gas. Appl. Surf. Sci. 255, 9676–9679 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    N.R. Agarwal, M. Tommasini, E. Fazio, F. Neri, R.C. Ponterio, S. Trusso, P.M. Ossi, SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation. Appl. Phys. A 117, 347–351 (2104)CrossRefGoogle Scholar
  17. 17.
    H. Dupendant, J.P. Gavignan, D. Givord, A. Lienard, J.P. Rebouillat, Velocity distribution of micron-size particles in thin film laser ablation deposition (LAD) of metals and oxide superconductors. Appl. Surf. Sci. 42, 369–376 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau, Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898–903 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, R. Dittmann, Pulsed laser ablation of complex oxides: the role of congruent ablation and preferential scattering for the film stoichiometry. Appl. Phys. Lett. 101, 131601 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys. Rev. B 41, 8843–8859 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    S. Anisimov, L. Landau, D. Bäuerle, B. Luk’yanchuk, Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys. Rev. B 48, 12076–12081 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Greer, M.D. Tabat, Large-area pulsed laser deposition: techniques and applications. J. Vac. Sci. Technol. A 13, 1175 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    E. Fazio, F. Neri, R.C. Ponterio, S. Trusso, P.M. Ossi, Micromachines 5, 1296–1309 (2014)CrossRefGoogle Scholar
  24. 24.
    Z.M. Zhang, S. Chen, Y.Z. Liang, Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135, 1138–1146 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    K.L. Saenger, in Angular Distribution of Ablated Material in: Pulsed Laser Deposition of Thin Films, Chap. 7, ed. by D.B. Chrisey, G.K. Hubler (Wiley, New York, 1994), pp. 199–227Google Scholar
  26. 26.
    T.N. Hansen, Angular distributions of silver ions and neutrals emitted in vacuum by laser ablation. EPL 10, 441–446 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    C. Zanchi, A. Lucotti, M. Tommasini, S. Trusso, U. de Grazia, E. Ciusani, P.M. Ossi, Au nanoparticle-based sensor for apomorphine detection in plasma. Beilstein J. Nanotechnol. 6, 2224–2232 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Santoro, E. Fazio, S. Trusso, M. Tommasini, A. Lucotti, R. Saija, M. Casazza, F. Neri, P.M. Ossi, SERS sensing of perampanel with nanostructured arrays of gold particles produced by pulsed laser ablation in water. Med. Devices Sens. 1, e10003 (2018)CrossRefGoogle Scholar
  29. 29.
    P.N. Patsalos, The clinical pharmacology profile of the new antiepilectic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia 56, 12–27 (2015)CrossRefGoogle Scholar
  30. 30.
    G.L. Krauss, E. Perucca, E. Ben-Menachem,P. Kwan, J.J. Shih, D. Squillacote, A.Laurenza, Perampanel a selective noncompetitive \(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, as adjunctive therapy for refractory partial onset seizures: Interim results from phase III, extension study 307. Epilepsia, 54, 126–134 (2013)Google Scholar
  31. 31.
    B.E. Gidal, J. Ferry, O. Majid, Z. Hussein, Concentration-effect relationships with perampanel in patients with pharmacoresistant partial-onset seizures. Epilepsia 54, 1490–1497 (2013)CrossRefGoogle Scholar
  32. 32.
    F.A. Miller, Misassignment of the strong Raman band near 1000 cm\(^{-1}\) in some substituted benzenes, and the Herzberg versus Wilson convention for numbering the vibrations of benzene. J. Raman Spectrosc. 19, 219–221 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di ChimicaMateriali e Ingegneria ChimicaMilanItaly
  2. 2.Center for Nanoengineered Materials and Surfaces-NEMAS, Dipartimento di EnergiaWinter Sports and Bio Nano-Diagnostics - WIDIBI LabMilanItaly
  3. 3.CNR-Istituto per i Processi Chimico-FisiciMessinaItaly

Personalised recommendations