Advertisement

Applied Physics A

, 125:206 | Cite as

Influence of InGaN interlayer thickness on GaN layers grown by metal organic chemical vapour deposition

  • K. PrabakaranEmail author
  • M. Jayasakthi
  • S. Surender
  • S. Pradeep
  • S. Sanjay
  • R. Ramesh
  • M. Balaji
  • K. BaskarEmail author
Article
  • 82 Downloads

Abstract

InGaN interlayer was grown between GaN layers on sapphire substrate using metal organic chemical vapour deposition. The crystalline quality of the sample was investigated using high-resolution X-ray diffraction. The indium composition and InGaN thickness were determined to be 10–15% and 5–10 nm, respectively. Transmission electron microscopy image revealed the interfacial characteristics of the InGaN and GaN layers. Raman spectroscopy revealed prominent GaN peak positions with InGaN shoulder peaks. The growth mode of InGaN and GaN was determined as nanoislands with helical-like morphology by atomic force microscopy. Hall measurement showcased improvement in the mobility and bulk concentration for the GaN/InGaN (5 nm)/GaN structures.

Notes

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology (DST), Government of India (DST/TM/SERI/2K12/71(G)), for funding the research project under SERI. The authors also thank Dr. D.V. Sridhara Rao, Defence Metallurgical Research Laboratory (DMRL), Hyderabad, India, for his constant support in TEM analysis. The author (K. Prabakaran) would like to thank Dr. David Mackenzie, Department of Electronics and Nanoengineering, Aalto University, Finland, for his diligent proofreading of this manuscript.

References

  1. 1.
    Y. Fujiyama, Y. Kuwahara, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, Phys. Status Solidi C 7, 2382 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C.F. Lin, K.T. Chen, S.H. Chen, C.C. Yang, W.C. Huang, T.H. Hsieh, J. Cryst. Growth 370, 97–100 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Liu, H. Liang, Y. Liu, X. Xia, H. Huang, P. Tao, Q.A. Sandhu, R. Shen, Y. Luo, G. Du, Mater. Sci. Semicond. Process. 60, 66–70 (2017)CrossRefGoogle Scholar
  4. 4.
    N.A. Kaufmann, A. Dussaigne, D. Martin, P. Valvin, T. Guillet, B. Gil, N. Grandjean, Semicond. Sci. Technol. 27, 105023 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    X. Sun, D. Li, H. Song, Y. Chen, H. Jiang, G. Miao, Z. Li, Nanoscale Res. Lett. 7(1), 282 (2012).  https://doi.org/10.1186/1556-276X-7-282 ADSCrossRefGoogle Scholar
  6. 6.
    J. Bai, C.C. Yang, M. Athanasiou, T. Wang, Appl. Phys. Lett. 104, 051129 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Sundaram, R. Puybaret, Y. El Gmili, X. Li, P.L. Bonanno, K. Pantzas, A. Ougazzaden, J. Appl. Phys. 116, 163105 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Sanjay, K. Baskar, Appl. Surf. Sci. 456, 526–531 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    T.H. Seo, J.P. Shim, S.J. Chae, G. Shin, B.K. Kim, D.S. Lee, E.K. Suh, Appl. Phys. Lett. 102, 031116 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    F. Lin, N. Xiang, P. Chen, S.Y. Chow, S.J. Chua, J. Appl. Phys. 103(4), 043508 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Kang, M. Ebaid, J.K. Lee, S.W. Ryu, Appl. Phys. A 121, 765–771 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Choi, J.M. Jang, W.G. Jung, J.Y. Kim, D.S. Kim, Electron. Mater. Lett. 4(2), 67–70 (2008)ADSGoogle Scholar
  13. 13.
    J. Liu, H. Liang, B. Li, Y. Liu, X. Xia, H. Huang, Q.A. Sandhu, R. Shen, Y. Luo, G. Du, RSC Adv. 6(65), 60068–60073 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Zheng, L. Wang, C. Mo, W. Fang, F. Jiang, Sci. World J. (2013).  https://doi.org/10.1155/2013/538297 (Article ID 538297) CrossRefGoogle Scholar
  15. 15.
    S. Keller, G. Parish, J.S. Speck, S.P. DenBaars, U.K. Mishra, Appl. Phys. Lett. 77(17), 2665–2667 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    K. Prabakaran, R. Ramesh, M. Jayasakthi, R. Loganathan, S. Surender, S. Pradeep, S. Singh, K. Baskar, Mater. Today Proc. 4, 12577–12581 (2017)  https://doi.org/10.1016/j.matpr.2017.10.064 CrossRefGoogle Scholar
  17. 17.
    S. Lazarev, S. Bauer, K. Forghani, M. Barchuk, F. Scholz, T. Baumbach, J. Cryst. Growth 370, 51–56 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    X.H. Wu, L.M. Brown, D. Kapolnek, S. Keller, B. Keller, S.P. DenBaars, J.S. Speck, J. Appl. Phys. 80, 3228–3237 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    E. Bellotti, F. Bertazzi, M. Goano, J. Appl. Phys. 101(12), 123706 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    K. Prabakaran, R. Ramesh, M. Jayasakthi, S. Surender, S. Pradeep, M. Balaji, K. Asokan, K. Baskar, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 394, 81–88 (2017)  https://doi.org/10.1016/j.nimb.2016.12.042 ADSCrossRefGoogle Scholar
  21. 21.
    T.L. Song, S.J. Chua, E.A. Fitzgerald, P. Chen, S. Tripathy, J Vac. Sci. Technol. A Vac. Surf. Films 22(2), 287–292 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V.M. Jali, S.B. Krupanidhi, Mater. Res. Bull. 61, 539–543 (2015)CrossRefGoogle Scholar
  23. 23.
    M.R. Correia, S. Pereira, E. Pereira, J. Frandon, E. Alves, Appl. Phys. Lett. 83(23), 4761–4763 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    S.E. Wu, S. Dhara, T.H. Hsueh, Y.F. Lai, C.Y. Wang, C.P. Liu, J. Raman Spectrosc. 40(12), 2044–2049 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Oliver, M.J. Kappers, C.J. Humphreys, G.A. Briggs, D, J. Appl. Phys. 97, 013707 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    P.Q. Miraglia, E.A. Preble, A.M. Roskowski, S. Einfeldt, R.F. Davis, J. Cryst. Growth 253, 16–25 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Wu, X. Shen, H. Xiong, Q. Li, J. Kang, Z. Fang, F. Lin, B. Yang, S. Lin, W. Shen, T.Y. Zhang, Appl. Phys. A 122, 108 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A. Yildiz, F. Dagdelen, S. Acarc, S.B. Lisesivdin, M. Kasap, Y. Aydogdu, M. Bosi, Acta Phys. Pol. A 113, 731–739 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    E. Papadomanolaki, C. Bazioti, S.A. Kazazis, M. Androulidaki, G.P. Dimitrakopulos, E. Iliopoulos, J. Cryst. Growth 437, 20–25 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Prabakaran
    • 1
    Email author
  • M. Jayasakthi
    • 1
  • S. Surender
    • 1
  • S. Pradeep
    • 1
  • S. Sanjay
    • 1
  • R. Ramesh
    • 3
  • M. Balaji
    • 4
  • K. Baskar
    • 1
    • 2
    Email author
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Manonmaniam Sundaranar UniversityTirunelveliIndia
  3. 3.Department of Electronics and NanoengineeringAalto UniversityAaltoFinland
  4. 4.Department of EnergyUniversity of MadrasChennaiIndia

Personalised recommendations