Skip to main content
Log in

The factors determining the band gap energy of the As-rich GaBixAs1−x

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The band gap energy in the As-rich GaBixAs1−x alloy is studied and a modified model is set up. It is found that the impurity–impurity interaction determined by the Bi pairs and Bi clusters should be taken into consideration. It is also found that when the Bi content increases, the band gap energy of GaBixAs1−x goes through from the impurity-like region to the band-like region in the As-rich range. In the impurity-like region, the Г VBM of GaBixAs1−x plays a more important role than the Г CBM in the band gap reduction. Under this condition, the impurity–host interaction in the valence band should be the most important factor to determine the band gap energy. On increasing Bi content, the Г VBM of GaBixAs1−x gradually shows a weaker composition dependence than Г CBM due to the influence of the localized Bi levels. In this case, the most important factor determining the band gap energy is the impurity–host interaction in the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Francoeur, S. Tixier, E. Young, T. Tiedje, A. Mascarenhas, Phys. Rev. B 77, 085209 (2008)

    Article  ADS  Google Scholar 

  2. H. Fitouri, Y. Essouda, I. Zaied, A. Rebey, B.E. Jani, Opt. Mater. 42, 67 (2015)

    Article  ADS  Google Scholar 

  3. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009)

    Article  ADS  Google Scholar 

  4. Y. Zhang, A. Mascarenhas, L.W. Wang, Phys. Rev. B 71, 155201 (2005)

    Article  ADS  Google Scholar 

  5. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003)

    Article  ADS  Google Scholar 

  6. C.A. Broderick, M. Usman, S.J. Sweeney, E.P. O’Reilly, Semicond. Sci. Technol. 27, 094011 (2012)

    Article  ADS  Google Scholar 

  7. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Phys. Rev. B 75, 045203 (2007)

    Article  ADS  Google Scholar 

  8. M. Usman, C.A. Broderick, A. Lindsay, E.P. O’Reilly, Phys. Rev. B 84, 245202 (2011)

    Article  ADS  Google Scholar 

  9. V. Virkkala, V. Havu, F. Tuomisto, M.J. Puska, Phys. Rev. B 88, 235201 (2013)

    Article  ADS  Google Scholar 

  10. H.X. Deng, J. Li, S.S. Li, H. Peng, J.B. Xia, L.W. Wang, S.H. Wei, Phys. Rev. B 82, 193204 (2010)

    Article  ADS  Google Scholar 

  11. M. Masnadi-Shirazi, R.B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, P. Servati, Appl. Phys. Lett. 116, 223506 (2014)

    Google Scholar 

  12. Y.H. Li, X.G. Gong, S.H. Wei, Phys. Rev. B 71, 73, 245206 (2006)

    Article  ADS  Google Scholar 

  13. S.H. Wei, A. Zunger, Phys. Rev. B 60, 5404 (1996)

    Article  ADS  Google Scholar 

  14. G. Ciatto, E.C. Young, F. Glas, J. Chen, R. Alonso, Mori, T. Tiedje, Phys. Rev. B 78, 035325 (2008)

    Article  ADS  Google Scholar 

  15. C.Z. Zhao, H.Y. Ren, T. Wei, S.S. Sha, K.Q. Lu, J. Electron. Mater. 47, 4539 (2018)

    Article  ADS  Google Scholar 

  16. Y. Zhang, A. Mascarenhas, H.P. Xin, C.W. Tu, Phys. Rev. B 63, 161303 (2001)

    Article  ADS  Google Scholar 

  17. T. Taliercio, R. Intartaglia, B. Gil, P. Lefebvre, T. Bretagnon, U. Tisch, E. Finkman, J. Salzman, M.A. Pinault, M. Laügt, E. Tournie, Phys. Rev. B 69, 073303 (2004)

    Article  ADS  Google Scholar 

  18. W. Huang, K. Oe, G. Feng, M. Yoshimoto, J. Appl. Phys. 98, 053505 (2005)

    Article  ADS  Google Scholar 

  19. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, J. Appl. Phys. 111, 113108 (2012)

    Article  ADS  Google Scholar 

  20. P. Ludewig, Z.L. Bushell, L. Nattermann, N. Knaub, W. Stolz, K. Volz, J. Crys. Growth 396, 95 (2014)

    Article  ADS  Google Scholar 

  21. A.R. Mohmad, F. Bastiman, C.J. Hunter, R. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, Appl. Phys. Lett. 101, 012106 (2012)

    Article  ADS  Google Scholar 

  22. K. Yang, D.-F. Li, W.-Q. Huang, L. Xu, G.-F. Huang, S. Wen, Appl. Phys. A. 123, 96 (2017)

    Article  ADS  Google Scholar 

  23. S.H. Wei, A. Zunger, Phys. Rev. Lett. 76, 664 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Zhen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CZ., Wei, T., Sun, XD. et al. The factors determining the band gap energy of the As-rich GaBixAs1−x. Appl. Phys. A 125, 145 (2019). https://doi.org/10.1007/s00339-019-2452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2452-9

Navigation