Skip to main content

Advertisement

Log in

Ultrabroadband metamaterial absorbers based on ionic liquids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An ultrabroadband metamaterial absorber (MMAs) based on room temperature ionic liquids (ILs) and composed entirely of cations and anions was proposed and analyzed in the microwave regimen. The dielectric permittivity of the ILs [EMIm] [N(CN)2] was investigated from 0.5 to 50 GHz; the loss tangent tanδ of [EMIm] [N(CN)2] declines from 5.91 to 0.34, which implies a high dielectric loss of microwaves. To further improve the impedance matching over a wide band, the ILs [EMIm] [N(CN)2] were injected in a periodic photopolymer cylindrical array fabricated via 3D printing. We numerically and experimentally demonstrate that this absorber shows over 90% absorption at 9.26–49 GHz when the incident angle is 45° with a relative bandwidth as high as 134.6%. Versus water-based MMAs, the proposed absorber shows more than twice the absorption bandwidth. Mechanistic investigations show that the ultrabroadband absorption characteristics of the ILs-based MMAs mainly contribute to IL dispersion and electromagnetic resonance. Furthermore, the electromagnetic wave energy loss is mainly due to the high-dielectric loss of ILs [EMIm] [N(CN)2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  2. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  3. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D.R. Smith, Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun. 3, 1213 (2012)

    Article  ADS  Google Scholar 

  4. Y.M. Liu, X. Zhang, Metamaterials: a new frontier of science and technology. Soc. Rev. 40, 2494–2507 (2011)

    Article  Google Scholar 

  5. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  7. W. Li, J.G. Guan, Z.G. Sun, W. Wang, Q.J. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials. Opt. Express 17, 23410–23416 (2009)

    Article  ADS  Google Scholar 

  8. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  9. M.K. Hedayati, F. Faupel, M. Elbahri, Review of plasmonic nanocomposite metamaterial absorber. Materials 7, 1221–1248 (2014)

    Article  ADS  Google Scholar 

  10. Y.X. Cui, Y.G. He, Y. Jin, F. Ding, L. Yang, Y.Q. Ye, S.M. Zhong, Y.Y. Lin, S.L. He, Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 8, 495–520 (2014)

    Article  ADS  Google Scholar 

  11. Q. Chen, S.W. Bie, W. Yuan, Y.S. Xu, H.B. Xu, J.J. Jiang, Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate. J. Phys. D. Appl. Phys. 49, 425102 (2016)

    Article  ADS  Google Scholar 

  12. X. Wang, B.Z. Zhang, W.J. Wang, J. Wang, J.P. Duan, Design, fabrication, and characterization of a flexible dual-band metamaterial absorber. IEEE Photonics J. 9, 4600213 (2017)

    Google Scholar 

  13. B. Casse, W.T. Lu, Y.J. Huang, L. Menon, S. Sridhar, Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96, 023114 (2010)

    Article  ADS  Google Scholar 

  14. C.B. Ma, Z.W. Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett. 96, 183103 (2010)

    Article  ADS  Google Scholar 

  15. C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.H. Chen, H.C. Wang, T.Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)

    Article  ADS  Google Scholar 

  16. W.L. Guo, G.M. Wang, T.J. Li, H.P. Li, Y.Q. Zhuang, H.S. Hou, Ultra-thin anisotropic metasurface for polarized beam splitting and reflected beam steering applications. J. Phys. D Appl. Phys. 49, 425305 (2016)

    Article  ADS  Google Scholar 

  17. Y. Wang, T.Y. Sun, T. Paudel, Y. Zhang, Z.F. Ren, K. Kempa, Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 12, 440–445 (2011)

    Article  ADS  Google Scholar 

  18. M.A. Green, S. Pillai, Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012)

    Article  ADS  Google Scholar 

  19. X.L. Liu, T. Starr, A.F. Starr, W.J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010)

    Article  ADS  Google Scholar 

  20. C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)

    Article  ADS  Google Scholar 

  21. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)

    Article  ADS  Google Scholar 

  22. F.N. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)

    Article  ADS  Google Scholar 

  23. J.L. Percheca, Y. Desieres, N. Rochat, R. Espiau de, Lamaestre, Subwavelength optical absorber with an integrated photon sorter. Appl. Phys. Lett. 100, 113305 (2012)

    Article  ADS  Google Scholar 

  24. J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, H. Jang, E.H. Choi, L. Chen, Y.P. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691 (2013)

    Article  ADS  Google Scholar 

  25. D.T. Viet, N.T. Hien, P.V. Tuong, N.Q. Minh, P.T. Trang, L.N. Le, Y.P. Lee, V.D. Lam, Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt. Commun. 322, 209–213 (2014)

    Article  ADS  Google Scholar 

  26. S. Ghosh, S. Bhattacharyya, K. Srivastava, in Design of a Bandwidth-Enhanced Ultra Thin Metamaterial Absorber. Progress in Electromagnetics Research Symposium Proceedings, pp. 1097–1111 (2013)

  27. J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476–3478(2011)

    Article  ADS  Google Scholar 

  28. F. Ding, Y.X. Cui, X.C. Ge, F. Zhang, Y. Jin, S.L. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)

    Article  ADS  Google Scholar 

  29. S.B. Ghosh, D. Chaurasiya, K.V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A. 118, 207–215 (2015)

    Article  ADS  Google Scholar 

  30. H.K. Kim, D.J. Lee, S. Lim, Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator. Appl. Opt. 55, 4113–4118 (2016)

    Article  ADS  Google Scholar 

  31. J.B. Sun, L.Y. Liu, G.Y. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)

    Article  ADS  Google Scholar 

  32. J. Zhang, G. Wang, B. Zhang, T. He, Y. He, J.L. Shen, Photo-excited broadband tunable terahertz metamaterial absorber. Opt. Mater. 54, 32–36 (2016)

    Article  ADS  Google Scholar 

  33. Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y. Lee, Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep. 5, 14018 (2015)

    Article  ADS  Google Scholar 

  34. J.W. Xie, W.R. Zhu, I.D. Rukhlenko, F.J. Xiao, C. He, J.P. Geng, X.L. Liang, R.H. Jin, M. Premaratne, Water metamaterial for ultra-broadband and wide-angle absorption. Opt. Express 26, 5052–5059 (2018)

    Article  ADS  Google Scholar 

  35. Y.Q. Pang, J.F. Wang, Q. Cheng, S. Xia, X.Y. Zhou, Z. Xu, T.J. Cui, S.B. Qu, Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 110, 104103 (2017)

    Article  ADS  Google Scholar 

  36. A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, Y.S. Kivshar, A.V. Lavrinenko, Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep. 5, 13535 (2015)

    Article  ADS  Google Scholar 

  37. X.J. Huang, H.L. Yang, Z.Y. Shen, J. Chen, H.L. Lin, Z.T. Yu, Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J. Phys. D Appl. Phys. 50, 385304 (2017)

    Article  Google Scholar 

  38. Q.H. Song, W. Zhang, P.C. Wu, W. Zhu, Z.X. Shen, P.H.J. Chong, Q.X. Liang, Z.C. Yang, Y.L. Hao, H. Cai, H.F. Zhou, Y. Gu, G.Q. Lo, D.P.Tsai, T. Bourouina, Y. Leprince-Wang, A.Q. Liu, Water-resonator-based metasurface: an ultrabroadband and near-unity absorption. Adv. Opt. Mater. 5, 1601103 (2017)

    Article  Google Scholar 

  39. N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  Google Scholar 

  40. M.J. Shiddiky, A.A. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron. 26, 1775–1787 (2011)

    Article  Google Scholar 

  41. B. Leidy, M. Agudelo, M.J. Padró, R. Mario, Analysis of non-polar heterocyclic aromatic amines in beefburguers by using microwave-assisted extraction and dispersive liquid–ionic liquid microextraction. Food Chem. 141, 1694–1701 (2013)

    Article  Google Scholar 

  42. J.H. Gong, F.L. Yang, Q.F. Shao, X.D. He, X.P. Zhang, S.M. Liu, L.Y. Tang, Y.Q. Deng, Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC. Adv. 7, 41980–41988 (2017)

    Article  Google Scholar 

  43. D. Micheli, C. Apollo, R. Pastore, M. Marchetti, X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol. 70, 400–409 (2010)

    Article  Google Scholar 

  44. S. Lee, J. Kang, C. Kim, Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct. 76, 397–405 (2006)

    Article  Google Scholar 

  45. J.G. Huddleston, A.E. Visser, W.M. Reichert, H. D.Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)

    Article  Google Scholar 

  46. A. Stoppa, J. Hunger, A. Thoman, H. Helm, G. Hefter, Buchner, Interactions and dynamics in ionic liquids. R. J. Phys. Chem. B 112, 4854–4858 (2008)

    Article  Google Scholar 

  47. F. Yu, J. Wang, J.F. Wang, H. Ma, H.L. Du, Z. Xu, S.B. Qu, Reflective frequency selective surface based on low-permittivity dielectric metamaterials. Appl. Phys. Lett. 107, 211906 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2017YFA0403101), the Natural Science Foundation of Gansu Province (17JR5RA119), and the Fundamental Research Funds for the Central Universities (lzujbky-2018-it62, lzujbky-2018-129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Zhang or Youquan Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Gong, J., Yang, E. et al. Ultrabroadband metamaterial absorbers based on ionic liquids. Appl. Phys. A 125, 149 (2019). https://doi.org/10.1007/s00339-019-2443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2443-x

Navigation