Skip to main content
Log in

In situ XRD analyses for asymmetric responses of poled PLZT ceramics during electric fatigue

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electric fatigue behaviors of the poled lanthanum-doped lead zirconate titanate (PLZT) ceramics were investigated using a home-made electric loading apparatus in conjunction with a conventional X-ray diffractometer. The XRD data were measured under actions of the applied direct current electric fields on the as-received poled PLZT specimens being experienced various cycles (10N) of alternating current (AC) electric fields. Experimental data showed that in addition to apparent degradation in remnant polarization, asymmetries in hysteresis loops and fraction of 90° domain switching curves were observed. It was found that an offset electrical field (\(\Delta {{\text{E}}_N}\)) was induced in the poled specimen by polarization with its direction against the direction of the polarization. Furthermore, the magnitude of \(\Delta {{\text{E}}_N}\) and the degree of asymmetry (δN) decreased as the number of AC electric fatigue cycles (10N) varied from 100 to 106. In situ XRD data suggested that the poled specimen exhibited different abilities to reorient a-domains into c-domains when the applied electric fields were opposite. The δN not only depended linearly on \(\Delta {{\text{E}}_N}\), but also on abilities of the poled specimen to reorient a-domains into c-domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q.Y. Jiang, E.C. Subbarao, J. Appl. Phys. 75, 7433 (1994)

    Article  ADS  Google Scholar 

  2. M. Promsawat, M. Deluca, S. Kampoosiri, B. Marungsri, S. Pojprapai, J. Eur. Ceram. Soc. 37(5), 2047 (2017)

    Article  Google Scholar 

  3. A. Antony Jeyaseelan, D. Rangappa, S. Dutta, Thin Solid Films 642, 136 (2017)

    Article  ADS  Google Scholar 

  4. M. Brazier, S. Mansour, M. McElfresh, Appl. Phys. Lett. 74, 4032 (1999)

    Article  ADS  Google Scholar 

  5. J.R. Anderson, G.W. Brady, W.J. Merz, J.P. Remeika, J. Appl. Phys. 26, 1387 (1955)

    Article  ADS  Google Scholar 

  6. D.C. Nina Balke, T. Lupascu, A. Blair, Gruverman, J. Appl. Phys. 100, 114117 (2006)

    Article  ADS  Google Scholar 

  7. F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum, T. Granzow, H. von Seggern, A. Klein, J. Appl. Phys. 108, 104106 (2010)

    Article  ADS  Google Scholar 

  8. S. Pojprapai, J. Russell, H. Man, J.L. Jones, J.E. Daniels, M. Hoffman, Acta Mater. 57(13), 3932 (2009)

    Article  Google Scholar 

  9. S. Takahashi, Ferroelectrics 41, 143 (1982)

    Article  Google Scholar 

  10. S. Takahashi, Jpn. J. Appl. Phys. 20, 95 (1981)

    Article  ADS  Google Scholar 

  11. V. Gopalan, M.C. Gupta, Appl. Phys. Lett. 68(7), 888 (1996)

    Article  ADS  Google Scholar 

  12. I.S. Baturin, A.R. Akhmatkhanov, V.Y. Shur, M.S. Nebogatikov, M.A. Dolbilov, E.A. Rodina, Ferroelectrics 374, 1 (2008)

    Article  Google Scholar 

  13. V. Gopalan, M.C. Gupta, J. Appl. Phys. 80(11), 6099 (1996)

    Article  ADS  Google Scholar 

  14. X.D. Qi, E.W. Sun, W.M. Lü, S.Y. Li, B. Yang, R. Zhang, W.W. Cao, CrystEngComm, 21,348(2019)

    Article  Google Scholar 

  15. X.D. Qi, E.W. Sun, S.Y. Li, W.M. Lü, R. Zhang, B. Yang, W.W. Cao, J. Mater. Sci. 53, 12762 (2018)

    Article  ADS  Google Scholar 

  16. G. Arlt, H. Neumann, Ferroelectrics 87, 109 (1988)

    Article  Google Scholar 

  17. Y.X. Yan, Y.J. Feng, Z.M. Li, Mater. Lett. 164, 248 (2016)

    Article  Google Scholar 

  18. C. Yang, E.W. Sun, B. Yang, W.W. Cao, J. Phys. D: Appl. Phys. 51, 415303 (2018)

    Article  Google Scholar 

  19. G. Du, R.H. Liang, L. Wang, K. Li, W.B. Zhang, G.S. Wang, X.L. Dong, Ceram. Int. 39, 7703 (2013)

    Article  Google Scholar 

  20. G. Du, R.H. Liang, W. Li, K. Li, W.B. Zhang, G.S. Wang, X.L. Dong, Appl. Phys. Lett. 102, 142903 (2013)

    Article  ADS  Google Scholar 

  21. S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, T. Shiosaki, Jpn. J. Appl. Phys. 38, 5364 (1999)

    Article  ADS  Google Scholar 

  22. L. Yu, S.W. Yu, X.Q. Feng, Mater. Sci. Eng. A 459, 273 (2007)

    Article  Google Scholar 

  23. S.W. Yu, L. Yu, Microsyst. Technol. 15, 33 (2009)

    Article  Google Scholar 

  24. F. Yang, Y.C. Zhou, M.H. Tang, F. Liu, J. Appl. Phys. 106, 0141101 (2009)

    Google Scholar 

  25. Y. Zhang, D.C. Lupascu, E. Aulbach, I. Baturin, A. Bell, J. Rodel, Acta Mater. 53, 2203 (2005)

    Article  Google Scholar 

  26. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, J. Appl. Phys. 108, 074107 (2010)

    Article  ADS  Google Scholar 

  27. T.M. Kamel, G. de With, J. Eur. Ceram. Soc. 28, 1827 (2008)

    Article  Google Scholar 

  28. K. ABE, S. Komatsu, N. Yanase, K. Sano, T. Kawakubo, Jpn. J. Appl. Phys. 36, 5846 (1997)

    Article  ADS  Google Scholar 

  29. M. Ozgul, S. Trolier-McKinstry, C.A. Randall, J. Appl. Phys. 95, 4296 (2004)

    Article  ADS  Google Scholar 

  30. Y.K. Gao, K. Uchino, D. Viehland, J. Appl. Phys. 101, 0541091 (2007)

    Google Scholar 

  31. J.K. Lee et al., Acta Mater. 61, 6765 (2013)

    Article  Google Scholar 

  32. M. Liu, K.J. Hsia, M.R. Sardela, J. Am. Ceram. Soc. 88, 210 (2005)

    Article  Google Scholar 

  33. M. Liu, K.J. Hsia, Appl. Phys. Lett. 83, 3978 (2003)

    Article  ADS  Google Scholar 

  34. Y. Zhang, Z.W. Chen, X. Cheng, S. Zhang, Acta Metall. Sin. 40, 1299 (2004)

    Google Scholar 

  35. Y. Saito, Jpn, J. Appl. Phys. 36, 5963 (1997)

    Article  Google Scholar 

  36. F.J. Yang, X. Cheng, Y. Zhang, J. Chin. Ceram. Soc. 43, 292 (2015)

    Google Scholar 

  37. R.W. James, The optical principles of the diffraction of X-rays (George Bell & Sons, London, 1959)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial supports from the National Natural Science Foundation of China (11372263) and the Fujian Key Laboratory of Advanced Materials (AML201501).

Author information

Authors and Affiliations

Authors

Contributions

F-JY designed the experiments and performed all the measurements; XC assisted the manuscript preparation; YZ prepared the manuscript.

Corresponding authors

Correspondence to Fengjuan Yang or Ying Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Cheng, X. & Zhang, Y. In situ XRD analyses for asymmetric responses of poled PLZT ceramics during electric fatigue. Appl. Phys. A 125, 148 (2019). https://doi.org/10.1007/s00339-019-2434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2434-y

Navigation