Skip to main content
Log in

Poly(aniline-co-2-hydroxyaniline): towards the thermal stability and higher solubility of polyaniline

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we adopted a donor–acceptor criteria for charge transfer and synthesize the thermally stable copolymers of poly(aniline-co-2-hydroxyaniline) (PA-co-2-HA) by in-situ copolymerization method having different compositions. The co-monomers used in the synthesis were aniline and 2-hydroxyaniline to obtain the (PA-co-2-HA). UV–Vis spectroscopy was used to see the change in bandgap (Eg) between HOMO and LUMO for the electronic transitions. FT-IR analysis has been performed to get functional details of polymers. The electrical conductivity copolymer was recorded by the two-probe method. The conductivity of copolymer depends upon the amount of molar feed in the composition. To probe the surface morphology and roughness profile, atomic force microscopy (AFM) has been applied. The thermal stability of the copolymers (PA-co-2-HA)s has been studied by thermogravimetric analysis (TGA). The particle size of the copolymer varies in the range of 100–500 nm as determined by particle size analyzer. The SEM analysis has been carried out to study the morphological behavior of the copolymer. 1H-NMR spectroscopy was used to study the structural details of the protons present in the copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching. Nat. Photonics 3, 297 (2009)

    Article  ADS  Google Scholar 

  2. J. Hou, H.-Y. Chen, S. Zhang, R.I. Chen, Y. Yang, Y. Wu, G. Li, Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J. Am. Chem. Soc. 131, 15586 (2009)

    Article  Google Scholar 

  3. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics. 3, 649 (2009)

    Article  ADS  Google Scholar 

  4. S. Hellstrom, J. Lars, A. Lindgren, Y Zhou, F. Zhang, O. Inganas, Synthesis and characterization of three small band gap conjugated polymers for solar cell applications. Polym. Chem. 1, 1272 (2010)

    Article  Google Scholar 

  5. J. Roncali, Synthetic principles for bandgap Control in linear π-conjugated systems. Chem. Rev. 97, 173 (1997)

    Article  Google Scholar 

  6. J.H. Burroughes, D.D.C. Bradey, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature. 347, 539 (1990)

    Article  ADS  Google Scholar 

  7. D.R. Baigent, P.J. Hamer, R.H. Friend, S.C. Moratti, A.B. Holmes, Polymer electroluminescence in the near infra-red. Synth. Met. 71, 2175 (1995)

    Article  Google Scholar 

  8. V.D. Parkar, Energetics of electrode reactions. II. The relationship between redox potentials, ionization potentials, electron affinities, and solvation energies of aromatic hydrocarbons. J.Am. Chem.Soc. 98(1), 98 (1976)

    Article  Google Scholar 

  9. L.E. Lyons, Energy gaps in organic semiconductors derived from electrochemical data. Aust. J.Chem. 33, 1717 (1980)

    Article  Google Scholar 

  10. R.O. Loutfy, Y.C. Cheng, Defect state model and effect of transition metal impurities on metal-free phthalocyanine: electrical and photoconductive properties. J.Chem.Phys. 73, 2911 (1980)

    Article  ADS  Google Scholar 

  11. J.P. Lowe, S.A. Kafafi, Effects of chemical substitution on polymer band gaps: transferability of band-edge energies. J.Am.Chem.Soc. 106, 5837 (1984)

    Article  Google Scholar 

  12. Z.G. Soos, G.W. Hayden, Site energies for π-electron models of conjugated polymers. Synth.Met. 28, D543 (1989)

    Article  Google Scholar 

  13. G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Scientific Reports 4, 1–7 (2014)

    Google Scholar 

  14. K. Deb, A. Bera, B. Saha, Tuning of electrical and optical properties of polyaniline incorporated functional paper for flexible circuits through oxidative chemical polymerization. RSC Adv. 6, 94795 (2016)

    Article  Google Scholar 

  15. S. Bai, Y. Zhao, J. Sun, Y. Tian, R. Luo, D. Li, A. Chen, Ultrasensitive room temperature NH3 sensor based on a graphene–polyaniline hybrid loaded on PET thin film. Chem.Comm. 51, 7524 (2015)

    Article  Google Scholar 

  16. J. Zhang, D. Shan, S. Mu, A promising copolymer of aniline and m-aminophenol: Chemical preparation, novel electric properties and characterization. Polymer 48, 1269 (2007)

    Article  Google Scholar 

  17. P. Saini, V. Choudhary, S. Details, Electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J. Mater. Sci. 48, 797 (2013)

    Article  ADS  Google Scholar 

  18. H. Yoon, B.M. Jung, H. Lee, Electrical transport in conductive blends of polyaniline in poly(methyl methacrylate). Synth. Met. 63,47, (1994)

  19. S.K. Dhawan, D.C. Trivedi, Poly (o-phenetidine)- a soluble conducting polymer: synthesis, characterization and its uses. Synth. Met. 60, 63 (1993)

    Article  Google Scholar 

  20. P. Saini, R. Jalan, S.K. Dhawan, Synthesis and characterization of processable polyaniline doped with novel dopant NaSIPA. J. Appl. Polym. Sci. 108, 1437 (2008)

    Article  Google Scholar 

  21. A.G. MacDiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein., Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)

    Article  Google Scholar 

  22. K. Tzou, R.V. Gregory, A method to prepare soluble polyaniline salt solutions - in situ doping of PANI base with organic dopants in polar solvents. Synth. Met. 53, 365 (1993)

    Article  Google Scholar 

  23. M. Yang, K. Cao, L. Sui, Q. Ying, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano. 5(9), 6945 (2011)

    Article  Google Scholar 

  24. X. Jing, Y. Wang, D. Wu, J. Qiang, Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochem. 14, 75 (2007)

    Article  Google Scholar 

  25. R.M. Silverstein, F.X. Webster, Identification of organic compounds, Wiley, Inc,Edition 7th, published. 88 (2005)

  26. V.G. Kulkarni, L.D. Cambell, W.R. Mathew, Thermal stability of polyaniline. Synth. Met. 30, 321 (1989)

    Article  Google Scholar 

  27. P. Kar, N. Pradhan, C. Adhikari, A novel route for the synthesis of processable conducting poly(m-aminophenol),Material Chemistry and Physics, 1, 59 (2008)

  28. T. Gopalaswamy, M. Gopalaswamy, M. Gopichand, Poly meta-aminophenol: chemical synthesis, characterization and AC impedance study. J. Polym. 11, 827043 (2014)

    Google Scholar 

  29. U.S. Waware, A.M.S. Hamouda, M. Rashid, G..J.Summers, The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J. Mater. Sci.: Mater. Electron. 28, 15178 (2017)

    Google Scholar 

  30. H. Mark, in Der feste Körper, ed. by R. Sänger (Hirzel, Leipzig, 1938), pp. 65–104

    Google Scholar 

  31. R. Houwink, Zusammenhang zwischen viscosimetrisch undosmotisch bestimm-ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem. 157, 15 (1940)

    Article  Google Scholar 

  32. L. Sapna Jadoun, U. Biswal, Riaz, Designed monomer and polymers, vol.21 no.1 75–81 (2018)

  33. L.J. Fetters, J.S. Lindner, J.W. Mays, J. Phys. Chem. Ref. Data, Vol. 23, No. 4 (1994)

Download references

Acknowledgements

We acknowledge the Qatar University, Doha, for providing required research fund to carry out the work. We do acknowledge the support for the instrumental analysis of sample by Central Lab Unit (CLU) and Centre for Advance Material (CAM) of the University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umesh Somaji Waware or Mohd Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waware, U.S., Hamouda, A.M.S. & Rashid, M. Poly(aniline-co-2-hydroxyaniline): towards the thermal stability and higher solubility of polyaniline. Appl. Phys. A 125, 127 (2019). https://doi.org/10.1007/s00339-019-2418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2418-y

Navigation