Skip to main content

Advertisement

Log in

Structure, microhardness and thermal conducting properties of the high-pressure high-temperature-treated Al–Ti–N materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The w-AlN → rs-AlN polymorphic transition in Ti–Al–N system with low TiN content (3 mol %) was observed. The experimental data show that this transition is possible under 12 GPa pressure at 1773 K. The formation of rs-AlN phase in the resulting composite materials was confirmed by XRD. The obtained materials have intermediate physical and mechanical properties as compared to the undoped w-AlN and TixAl1−xN solid solution. They are found to have high Vickers hardness (31 GPa at a load of 50 g)—which is twice as hard as w-AlN. The thermal conductivity of the rs-AlN-containing Al–Ti–N materials was measured for the first time using the frequency separation (3ω) method and gave high thermal conductivity coefficients up to 100 W/m × K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.R. Grandusky, R.V. Randive, T.C. Jordan, L.J. Schowalter, in III-Nitride Ultraviolet Emitters, ed. by M. Kneiss, J. Rass (Springer, Cham, 2016), p. 442

    Google Scholar 

  2. Y. Bian, M. Liu, G. Ke, Y. Chen, J. DiBattista, E. Chan, Y. Yang, Surf. Coat. Technol. (2015). https://doi.org/10.1016/j.surfcoat.2014.11.060

    Article  Google Scholar 

  3. D. Liu, S.J. Cho, J. Park, J. Gong, J.-H. Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A.R.K. Kalapala, J.D. Albrecht, W. Zhou, B. Moody, Z. Ma, Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5038044

    Article  Google Scholar 

  4. S. Subramani, M. Devarajan, IEEE Trans. Electron Devices (2016). https://doi.org/10.1109/TED.2016.2620519

    Article  Google Scholar 

  5. A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, S.A. Barnett, Phys. Rev. Lett. (1997). https://doi.org/10.1103/PhysRevLett.78.1743

    Article  Google Scholar 

  6. Z. Li, S. Yadav, Y. Chen, N. Li, X.-Y. Liu, J. Wang, S. Zhang, J.K. Baldwin, A. Misra, N. Mara, Mater. Res. Lett. (2017). https://doi.org/10.1080/21663831.2017.1303793

    Article  Google Scholar 

  7. V.S. Kudyakova, R.A. Shishkin, A.A. Elagin, M.V. Baranov, A.R. Beketov, J. Eur. Ceram. Soc. (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.11.051

    Article  Google Scholar 

  8. A. Siegel, K. Parlinski, U. Wdowik, Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.104116

    Article  Google Scholar 

  9. M.R. Schwarz, M. Antlauf, S. Schmerler, K. Keller, T. Schlothauer, J. Kortus, G. Heide, E. Kroke, High Press. Res. (2014). https://doi.org/10.1080/08957959.2013.857020

    Article  Google Scholar 

  10. V.V. Bannikov, V.S. Kudyakova, A.A. Elagin, M.V. Baranov, A.R. Beketov, J. Struct. Chem. (2016). https://doi.org/10.1134/S0022476616080072

    Article  Google Scholar 

  11. N. Norrby, H. Lind, G. Parakhonskiy, M.P. Johansson, F. Tasnádi, L.S. Dubrovinsky, N. Dubrovinskaia, I.a. Abrikosov, M. Odén, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4790800

    Article  Google Scholar 

  12. B. Alling, A.V. Ruban, A. Karimi, O.E. Peil, S.I. Simak, L. Hultman, I.A. Abrikosov, Phys. Rev. B Condens. Matter Mater. Phys. (2007). https://doi.org/10.1103/PhysRevB.75.045123

    Article  Google Scholar 

  13. B. Alling, T. Marten, I.A. Abrikosov, A. Karimi, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2773625

    Article  Google Scholar 

  14. D.-F. Lii, J. Mater. Sci. (1998). https://doi.org/10.1023/A:1004327421261

    Article  Google Scholar 

  15. V.V. Bannikov, A.R. Beketov, M.V. Baranov, A.A. Elagin, V.S. Kudyakova, R.A. Shishkin, Phys. Solid State. (2016). https://doi.org/10.1134/S106378341605005X

    Article  Google Scholar 

  16. L.G. Khvostantsev, L.F. Vereshchagin, A.P. Novikov, High Temp. High Press. (1977). https://doi.org/10.1080/0895795041233129876

    Article  Google Scholar 

  17. ASTM E384-17: Standard test method for knoop and vickers hardness of materials

  18. D.G. Cahill, Rev. Sci. Instrum. (1990). https://doi.org/10.1063/1.1141498

    Article  Google Scholar 

  19. C.-K. Liu, C.-K. Yu, H.-C. Chien, S.-L. Kuo, C.-Y. Hsu, M.-J. Dai, G.-L. Luo, S.-C. Huang, M.-J. Huang, J. Appl. Phys. (2008). https://doi.org/10.1063/1.3032602

    Article  Google Scholar 

  20. M.V. Shaleev, A.V. Novikov, D.V. Yurasov, J.M. Hartmann, O.A. Kuznetsov, D.N. Lobanov, Z.F. Krasilniket, Semiconductors. (2013). https://doi.org/10.1134/S106378261303024X

    Article  Google Scholar 

  21. H. Vollstadt, E. Ito, M. Akaishi, S. Akimoto, O. Fukunaga, Proc. Jpn. Acad. B. (1990). https://doi.org/10.2183/pjab.66.7

    Article  Google Scholar 

  22. A.E. Santana, A. Karimi, V.H. Derflinger, A. Schütze, Thin Solid Films. (2004). https://doi.org/10.1016/j.tsf.2004.08.147

    Article  Google Scholar 

  23. A. Höling, L. Hultman, M. Odén, J. Sjölén, L. Karlsson, Surf. Coat Technol. (2005). https://doi.org/10.1016/j.surfcoat.2004.04.056

    Article  Google Scholar 

  24. L. Chen, Y.X. Xu, Y. Du, Y. Liu, Thin Solid Films. (2015). https://doi.org/10.1016/j.tsf.2015.09.029

    Article  Google Scholar 

  25. L. Karlsson, L. Hultmanb, J.-E. Sundgrenb, Thin Solid Films. (2000). https://doi.org/10.1016/S0040-6090(00)00996-2

    Article  Google Scholar 

  26. J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, J. Phys. D Appl. Phys. (1997). https://doi.org/10.1088/0022-3727/30/1/002

    Article  Google Scholar 

  27. X. Du, M. Qin, A. Rauf, Z. Yuan, B. Yang, X. Qu, Mater.Sci. Eng. A (2008). https://doi.org/10.1016/j.msea.2008.05.027

    Article  Google Scholar 

  28. Q. Li, Z. Wang, C. Wu, Cheng, Xin, J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.03.235

    Article  Google Scholar 

  29. J.-X. Zhang, Z.-R. Huang, D.-L. Jiang, S.H. Tan, Z. Shen, M. Nygren, J. Am. Ceram. Soc. (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00234.x

    Article  Google Scholar 

  30. W. Kim, J.-S. Park, S.-W. Cho, N.-R. Kim, I.-Y. Ko, I.-J. Shon, Properties and rapid consolidation of binderless titanium nitride by pulsed current activated sintering. J. Ceram. Process. Res. 11, 627–630 (2010)

    Google Scholar 

  31. O.N. Grigor’ev, T.V. Mosina, N.P. Brodnikovskii, Refract. Ind. Ceram. (2001). https://doi.org/10.1023/A:1014006327090

    Article  Google Scholar 

  32. S. Kume, I. Yamada, K. Watari, I. Harada, K. Mitsuishi, J. Am. Ceram. Soc. (2009). https://doi.org/10.1111/j.1551-2916.2008.02650.x

    Article  Google Scholar 

  33. J. Martan, P. Beneš, Thermochim. Acta (2012). https://doi.org/10.1016/j.tca.2012.03.029

    Article  Google Scholar 

  34. K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, K. Mori, J. Mater. Res. (2002). https://doi.org/10.1557/JMR.2002.0426

    Article  Google Scholar 

  35. G.P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990)

    Google Scholar 

  36. H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing (Noyes Publications, Westwood, 1996)

    Google Scholar 

  37. W. Zhou, Thermochim. Acta. (2011). https://doi.org/10.1016/j.tca.2010.10.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. V.P. Filonenko of Institute for High Pressure Physics and Russian Academy of Sciences for HPHT-treated samples. The reported study was funded by RFBR according to the research project no. 18-33-01136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kudyakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudyakova, V.S., Chukin, A.V., Dorokhin, M.V. et al. Structure, microhardness and thermal conducting properties of the high-pressure high-temperature-treated Al–Ti–N materials. Appl. Phys. A 125, 123 (2019). https://doi.org/10.1007/s00339-019-2415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2415-1

Navigation