Skip to main content
Log in

A review on the numerical modeling of CdS/CZTS-based solar cells

  • Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CZTS thin-film is now one of the most promising materials for the sustainable absorption of solar cells. Recently, there has been interest in enhancing efficiency and reducing costs of manufacturing CZTS-based solar cells. Nevertheless, there is no report focused on explaining the role of numerical modeling’s help to understand this cell. In this review, we discuss the advantages and the challenges of the experimental pure sulfide CZTS-based solar cells. The softwares used in simulations thin-films solar cells are discussed. The solutions for improving efficiency of CdS/CZTS-based solar cells using numerical modeling are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017)

    Google Scholar 

  2. M. Jiang, X. Yan, Cu2ZnSnS4 thin film solar cells: present status and future prospects. In Solar CellsResearch and Application Perspectives, (InTech, UK, 2013)

  3. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors. Sol. Energy Mater. Sol. Cells 49(1), 407–414 (1997)

    Google Scholar 

  4. H. Katagiri, N. Ishigaki, T. Ishida, K. Saito, Characterization of CuZnSnS thin films prepared by vapor phase sulfurization. Jpn. J. Appl. Phys. 40, 500–504 (2001)

    ADS  Google Scholar 

  5. T. Tanaka et al., Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66(11), 1978–1981 (2005)

    ADS  MathSciNet  Google Scholar 

  6. J. Zhang, L. Shao, Y. Fu, E. Xie, Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties. Rare Met. 25, 315–319 (2006)

    Google Scholar 

  7. N. Kamoun, H. Bouzouita, B. Rezig, Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films 515(15), 5949–5952 (2007)

    ADS  Google Scholar 

  8. J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material, Phys. Status Solidi B 245(9), 1772–1778 (2008)

    ADS  Google Scholar 

  9. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Precursors order effect on the properties of sulfurized Cu 2ZnSnS4 thin films. Semicond. Sci. Technol. 24(10), 105013 (2009)

    ADS  Google Scholar 

  10. C.P. Chan, H. Lam, C. Surya, Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 94(2), 207–211 (2010)

    Google Scholar 

  11. J.P. Leitão et al., Study of optical and structural properties of Cu2ZnSnS4 thin films. Thin Solid Films 519(21), 7390–7393 (2011)

    ADS  Google Scholar 

  12. Z. Su et al., Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Appl. Surf. Sci. 258(19), 7678–7682 (2012)

    ADS  Google Scholar 

  13. N.M. Shinde, R.J. Deokate, C.D. Lokhande, Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films. J. Anal. Appl. Pyrolysis 100, 12–16 (2013)

    Google Scholar 

  14. M.Z. Ansari, N. Khare, Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition. J. Phys. Appl. Phys. 47(18), 185101 (2014)

    ADS  Google Scholar 

  15. R. Touati, M. Ben Rabeh, M. Kanzari, ‘Effect of post-sulfurization on the structural and optical properties of Cu 2 ZnSnS4 thin films deposited by vacuum evaporation method’. Thin Solid Films 582, 198–202 (2015)

    ADS  Google Scholar 

  16. F. Aslan, A. Göktaş, A. Tumbul, Influence of pH on structural, optical and electrical properties of solution processed Cu2ZnSnS4 thin film absorbers. Mater. Sci. Semicond. Process. 43, 139–143 (2016)

    Google Scholar 

  17. M. Courel, J.A. Andrade-Arvizu, A. Guillén-Cervantes, M.M. Nicolás-Marín, F.A. Pulgarín-Agudelo, O. Vigil-Galán, Optimization of physical properties of spray-deposited Cu 2 ZnSnS 4 thin films for solar cell applications. Mater. Des. 114, 515–520 (2017)

    Google Scholar 

  18. A. Tumbul, M.Z. Göktaş, Zarbali, F. Aslan, Structural, morphological and optical properties of the vacuum-free processed CZTS thin film absorbers. Mater. Res. Express 5(6), 066408 (2018)

    ADS  Google Scholar 

  19. Yan et al., Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3(9), 764–772 (2018)

    ADS  Google Scholar 

  20. K. Sun et al., Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdx S buffer layer. Adv. Energy Mater. 6(12), 1600046 (2016)

    Google Scholar 

  21. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65, 141–148 (2001)

    Google Scholar 

  22. H. Katagiri, K. Jimbo, K. Moriya, K. Tsuchida, Solar cell without environmental pollution by using CZTS thin film. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 3 (IEEE, 2003), pp. 2874–2879

  23. T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Investigation of Cu ZnSnS-based thin film solar cells using abundant materials. Jpn. J. Appl. Phys. 44, 783–787 (2005)

    ADS  Google Scholar 

  24. K. Moriya, K. Tanaka, H. Uchiki, Fabrication of CuZnSnS thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 46, 5780–5781 (2007)

    ADS  Google Scholar 

  25. H. Katagiri et al., Enhanced conversion efficiencies of CuZnSnS -based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1, 041201 (2008)

  26. A. Ennaoui et al., Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films 517(7), 2511–2514 (2009)

    ADS  Google Scholar 

  27. K. Wang et al., Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97(14), 143508 (2010)

    ADS  Google Scholar 

  28. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 95(3), 838–842 (2011)

    Google Scholar 

  29. K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Sol. Energy Mater. Sol. Cells 95(10), 2855–2860 (2011)

    Google Scholar 

  30. R.B.V. Chalapathy, G.S. Jung, B.T. Ahn, Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells. Sol. Energy Mater. Sol. Cells 95(12), 3216–3221 (2011)

    Google Scholar 

  31. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, ‘Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber: Cu2ZnSnS4 solar cell with 8.4% efficiency’. Prog. Photovolt. Res. Appl. 21(1), 72–76 (2013)

    Google Scholar 

  32. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2(2), 253–259 (2012)

    Google Scholar 

  33. T. Fukano, S. Tajima, T. Ito, Enhancement of conversion efficiency of CuZnSnS thin film solar cells by improvement of sulfurization conditions. Appl. Phys. Express, 6, 062301 (2013)

    ADS  Google Scholar 

  34. P. Emrani, Vasekar, C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy 98, 335–340 (2013)

    ADS  Google Scholar 

  35. T.P. Dhakal, C. Peng, R. Reid Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23–30 (2014)

    ADS  Google Scholar 

  36. F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack. Adv. Energy Mater. 4(7), 1301381 (2014)

    Google Scholar 

  37. J. Tao et al., A sputtered CdS buffer layer for co-electrodeposited CuZnSnS solar cells with 6.6% efficiency. Chem. Commun. 51, 10337–10340 (2015)

    Google Scholar 

  38. J. Tao et al., 7.1% efficient co-electroplated CuZnSnS thin film solar cells with sputtered CdS buffer layers. Green Chem. 18, 550–557 (2016)

    Google Scholar 

  39. S. Tajima, M. Umehara, M. Hasegawa, T. Mise, T. Itoh, Cu 2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition: Cu 2ZnSnS4 photovoltaic cell with improved efficiency. Prog. Photovolt. Res. Appl. 25(1), 14–22 (2017)

    Google Scholar 

  40. M.G. Sousa, A.F. da Cunha, J.P. Teixeira, J.P. Leitão, G. Otero-Irurueta, M.K. Singh, Optimization of post-deposition annealing in Cu 2 ZnSnS 4 thin film solar cells and its impact on device performance. Sol. Energy Mater. Sol. Cells 170, 287–294 (2017)

    Google Scholar 

  41. S. Rühle, Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016)

    ADS  Google Scholar 

  42. M. Mazzeret al., Bifacial CIGS solar cells grown by low temperature pulsed electron deposition. Sol. Energy Mater. Sol. Cells 166, 247–253 (2017)

    Google Scholar 

  43. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, ‘Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%’. Phys. Status Solidi RRL Rapid Res. Lett. 10(8), 583–586 (2016)

    ADS  Google Scholar 

  44. K. Zhang, H. Guo, Effects of annealing on Cu2ZnSnS4 thin films prepared on Mo substrate and the fabrication of solar cells. J. Mater. Sci. Mater. Electron. 28(22), 17044–17048 (2017)

    Google Scholar 

  45. J. Tao et al., Co-electrodeposited CuZnSnS thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A 4, 3798–3805 (2016)

    Google Scholar 

  46. N. Naghavi et al., Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl. 18(6), 411–433 (2010)

    Google Scholar 

  47. M. Polman, E.C. Knight, B. Garnett, Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352(6283), aad4424 (2016)

    Google Scholar 

  48. H. Katagiri, K. Jimbo, M. Tahara, H. Araki, K. Oishi, The influence of the composition ratio on CZTS-based thin film solar cells., MRS Proc. 1165, (2009)

  49. M.T. Htay et al., A cadmium-free Cu2ZnSnS4/ZnO hetrojunction solar cell prepared by practicable processes. Jpn. J. Appl. Phys. 50, 032301 (2011)

    ADS  Google Scholar 

  50. A.I. Inamdar, K.-Y. Jeon, H. Woo, W. Jung, H. Im, H. Kim, Synthesis of a Cu2ZnSnS4 (CZTS) absorber layer and metal doped ZnS buffer layer for heterojunction solar cell applications. ECS Trans. 41(4), 167–175 (2011)

    Google Scholar 

  51. J. Kim et al., Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells. Thin Solid Films 566, 88–92 (2014)

    ADS  Google Scholar 

  52. V.G. Rajeshmon, C.S. Kartha, K.P. Vijayakumar, A.B. Garg, R. Mittal, R. Mukhopadhyay, Spray pyrolysed Cu[sub 2]ZnSnS[sub 4] solar cell using cadmium free buffer layer’, presented at the solid state physics, proceedings of the 55th day solid state physics symposium 2010 (Manipal, 2011) pp. 683–684

  53. J. Yu et al., Effect of deposited temperatures of the buffer layer on the band offset of CZTS/In 2 S 3heterostructure and its solar cell performance. Chin. Phys. B 26(4), 046802 (2017)

    ADS  Google Scholar 

  54. T. Ericson et al., Zn(O, S) Buffer layers and thickness variations of CdS buffer for Cu $_{2}$ZnSnS$_{4}$ solar cells. IEEE J. Photovolt. 4(1), 465–469 (2014)

    MathSciNet  Google Scholar 

  55. C. Platzer-Björkman et al., Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1–xSnxOy buffer layers. Appl. Phys. Lett. 107(24), 243904 (2015)

    ADS  Google Scholar 

  56. T. Ericson et al., Zinc–Tin–Oxide buffer layer and low temperature post annealing resulting in a 9.0% efficient Cd-free Cu 2ZnSnS4 solar cell. Sol. RRL 1(5), 1700001 (2017)

    Google Scholar 

  57. X. Cui et al., Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu 2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer. Chem. Mater. 30(21), 7860–7871 (2018)

    Google Scholar 

  58. W. Wang et al., The effects of SnS 2 secondary phases on Cu 2ZnSnS4 solar cells: a promising mechanical exfoliation method for its removal. J. Mater. Chem. A 6(7), 2995–3004 (2018)

    Google Scholar 

  59. T.J. Huang, X. Yin, G. Qi, H. Gong, CZTS-based materials and interfaces and their effects on the performance of thin film solar cells: CZTS-based materials and interfaces and their effects on the performance of thin film solar cells. Phys. Status Solidi RRL 08(09), 735–762 (2014)

    Google Scholar 

  60. D. Mamedov, M. Klopov, S.Z. Karazhanov, Influence of Cu2S, SnS and Cu2ZnSnSe4 on optical properties of Cu2ZnSnS4. Mater. Lett. 202, 70–72 (2017)

    Google Scholar 

  61. T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103(10), 103506 (2013)

  62. C. Yan, J. Huang, K. Sun, Y. Zhang, M.A. Green, X. Hao, Efficiency improvement of high band gap Cu2ZnSnS4 solar cell achieved by silver incorporation. In IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp. 3709–3711 (2018)

  63. C.-Y. Liu, Z.-M. Li, H.-Y. Gu, S.-Y. Chen, H. Xiang, X.-G. Gong, Sodium passivation of the grain boundaries in CuInSe2 and Cu 2ZnSnS4 for high-efficiency solar cells. Adv. Energy Mater. 7(8), 1601457 (2017)

    Google Scholar 

  64. S. Zhuk, A. Kushwaha, T.K.S. Wong, S. Masudy-Panah, A. Smirnov, G.K. Dalapati, ‘Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance’. Sol. Energy Mater. Sol. Cells 171, 239–252 (2017)

    Google Scholar 

  65. M. Courel, E. Valencia-Resendiz, J.A. Andrade-Arvizu, E. Saucedo, O. Vigil-Galán, ‘Towards understanding poor performances in spray-deposited Cu 2 ZnSnS 4 thin film solar cells. Sol. Energy Mater. Sol. Cells 159, 151–158 (2017)

    Google Scholar 

  66. M. Courel et al., Study on the impact of stoichiometric and optimal compositional ratios on physical properties of Cu 2ZnSnS4 thin films deposited by spray pyrolysis. Mater. Res. Express 5(1), 015513 (2018)

    ADS  Google Scholar 

  67. C.W. Hong, S.W. Shin, M.P. Suryawanshi, M.G. Gang, J. Heo, J.H. Kim, Chemically deposited CdS buffer/kesterite Cu 2ZnSnS4 solar cells: relationship between CdS thickness and device performance. ACS Appl. Mater. Interfaces 9(42), 36733–36744 (2017)

    Google Scholar 

  68. S. Rondiya et al., CZTS/CdS: interface properties and band alignment study towards photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(5), 4201–4210 (2018)

    Google Scholar 

  69. F. Liu et al., Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett. 104(5), 051105 (2014)

    ADS  Google Scholar 

  70. H. Cui et al., Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. MRS Proc., 1638 (2014)

  71. W. Li, J. Chen, H. Cui, F. Liu, X. Hao, Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells. Mater. Lett. 130, 87–90 (2014)

    Google Scholar 

  72. Z. Wei et al., Engineering of a Mo/SixNy diffusion barrier to reduce the formation of MoS2 in Cu2ZnSnS4 thin film solar cells. ACS Appl. Energy Mater. 1(6), 2749–2757 (2018)

    Google Scholar 

  73. J. Park et al., ‘The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu 2 ZnSnS 4 solar cells. Thin Solid Films 648, 39–45 (2018)

    ADS  Google Scholar 

  74. S. Selberherr, Analysis and simulation of semiconductor devices (Springer, New York, 2013)

    Google Scholar 

  75. J.L. Gray, ADEPT: a general purpose numerical device simulator for modeling solar cells in one-, two-, and three-dimensions, In Photovoltaic Specialists Conference, Conference Record of the Twenty Second IEEE, pp. 436–438 (1991)

  76. S.J. Fonash et al., A manual for AMPS-1D: a one-dimensional device simulation program for the analysis of microelectronic and photonic structures, Pennsylvania State University

  77. R. Stanglet al., ‘AFORS-HET a numerical PC-program for simulation of heterojunction solar, cells, version 1.1 (open-source on demand), to be distributed for public use. In Proc. 19th PVSEC, Paris, France, p. 1497 (2004)

  78. ‘Semiconductor Software, Modeling the physics of semiconductor devices. https://www.comsol.fr/semiconductor-module. Accessed: 30 Sep 2018 (Online)

  79. PC1Dmod User Manual 6.1, Institute for Energy Technology, Norway & Fraunhofer Institute for Solar Energy Systems, Germany. https://www2.pvlighthouse.com.au/resources/PC1D/PC1Dmod6/PC1Dmod%206-1%20help.pdf. Accessed 21 Jan 2019

  80. M. Burgelman et al., SCAPS manual, University of Gent, Belgium (2018)

  81. SILVACO International, ATLAS user’s manual: device simulation software (2004)

  82. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55, 2192–2193 (1967)

    Google Scholar 

  83. N.D. Arora, J.R. Hauser, D.J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29, 292–295 (1982)

    ADS  Google Scholar 

  84. J.M. Dorkel, P. Leturcq, Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level. Solid State Electron. 24(9), 821–825 (1981)

    ADS  Google Scholar 

  85. D.B.M. Klaassen, A unified mobility model for device simulation, In International Technical Digest on Electron Devices, San Francisco, CA, USA, 1990, pp. 357–360 (1990)

  86. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 12(23), 143–153 (2004)

    Google Scholar 

  87. A. Haddout, A. Raidou, M. Fahoume, Numerical modeling of CdTe solar cells thin film investigation by using PC1D model. World J. Eng. 15, 549–555 (2018)

  88. A. Haddout, Raidou, M. Fahoume, Influence of the layer parameters on the performance of the CdTe solar cells. Optoelectron. Lett. 14(2), 98–103 (2018)

    ADS  Google Scholar 

  89. A. Haddout, M. Raidou, N. Fahoume, Elharfaoui, M. Lharch, Influence of CZTS layer parameters on cell performance of Kesterite thin-film solar cells. In Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, vol. 519, ed. by B. Hajji, G.M. Tina, K. Ghoumid, A. Rabhi, A. Mellit (Springer, Singapore, 2019), pp. 640–646

    Google Scholar 

  90. T. Frisk, S.-Y. Ericson, P. Li, J. Szaniawski, Olsson, C. Platzer-Björkman, Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu 2 ZnSnS 4 device modeling. Sol. Energy Mater. Sol. Cells 144, 364–370 (2016)

    Google Scholar 

  91. A. Pu et al., Sentaurus modelling of 6.9% Cu 2 ZnSnS 4 device based on comprehensive electrical & optical characterization. Sol. Energy Mater. Sol. Cells 160, 372–381 (2017)

    Google Scholar 

  92. L.-Y. Lin, Y. Qiu, Y. Zhang, H. Zhang, Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS. Chin. Phys. Lett. 33(10), 107801 (2016)

    ADS  Google Scholar 

  93. M. Jani, D. Raval, I. Mukhopadhyay, A. Ray, Reinforcement of Zn(O,S) buffer layer for efficient band matching in a kesterite (Cu2ZnSnS4) solar cell and its analysis using simulation tool for the application in energy harvesting. In Presented at the Functional Oxides And Nanomaterials: Proceedings of the International Conference on Functional Oxides and Nanomaterials, vol. 1837, p. 040060 (2017)

  94. V. Sivathanu, T. Rajalingam, T.R. Lenka, Modelling of CZTS/ZnS/AZO solar cell for efficiency enhancement. In 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, pp. 1–2 (2018)

  95. M. Bahfir, Boumaour, M. Kechouane, Prospects of potential ZnMgO front layer in CZTS solar cells. Optik 169, 196–202 (2018)

    ADS  Google Scholar 

  96. M. Patel, A. Ray, Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments. Phys. B Condens. Matter 407(21), 4391–4397 (2012)

    ADS  Google Scholar 

  97. J. Xu, Investigation of Cu2ZnSnS4 thin-film solar cells with carrier concentration gradient. J. Phys. Chem. Solids 98, 32–37 (2016)

    ADS  Google Scholar 

  98. S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)

    ADS  Google Scholar 

  99. D. Adewoyin, M.A. Olopade, M. Chendo, Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Opt. Int. J. Light Electron Opt. 133, 122–131 (2017)

    Google Scholar 

  100. Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Enhancement of the conversion efficiency of thin film kesterite solar cell. J. Renew. Sustain. Energy 10(3), 033501 (2018)

    Google Scholar 

  101. Kumar, A.D. Thakur, Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57(8S3), 08RC05 (2018)

    Google Scholar 

  102. W. Zhao, W. Zhou, X. Miao, Numerical simulation of CZTS thin film solar cell. In 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 502–505 (2012)

  103. K. Wang, B. Shin, K.B. Reuter, T. Todorov, D.B. Mitzi, S. Guha, Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 98(5), 051912 (2011)

    ADS  Google Scholar 

  104. P. Chelvanathan, M.I. Hossain, J. Husna, M. Alghoul, K. Sopian, N. Amin, Effects of transition metal dichalcogenide molybdenum disulfide layer formation in Copper–Zinc–Tin–Sulfur solar cells from numerical analysis. Jpn. J. Appl. Phys. 51, 10NC32 (2012)

  105. M.T. Ferdaous et al., Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis. Sol. Energy 178, 162–172 (2019)

    ADS  Google Scholar 

  106. S.M. Mopurisetty, M. Bajaj, S. Ganguly, TCAD calibration for Cu2ZnSnS4 solar cell simulation, In 2016 IEEE 43rd, Photovoltaic Specialists Conference (PVSC), pp. 2228–2231 (2016)

  107. J.H.N. Tchognia et al., Optimization of the output parameters in kesterite-based solar cells by AMPS-1D, In 2015 3rd International, Renewable and Sustainable Energy Conference (IRSEC), IEEE, pp. 1–6 (2015)

Download references

Acknowledgements

The authors gratefully acknowledge anonymous reviewers for their scientific suggestions and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assiya Haddout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddout, A., Raidou, A. & Fahoume, M. A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125, 124 (2019). https://doi.org/10.1007/s00339-019-2413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2413-3

Navigation