Skip to main content
Log in

Dependence of pop-in behavior of a high-entropy alloy FeCoCrMnNi on tip radius

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Our previous work has established that the dislocation nucleation during the onset of plasticity, the so-called pop-in, in face-centered cubic single-phased high-entropy alloy FeCoCrMnNi is controlled by vacancy defects. This implies that the tip radius would affect the pop in behavior as the number of vacancy, the available sites for dislocation nucleation, within the stressed volume is proportional to radius. To verify this in current work, a wide range of nanoindenter tips with radius across from 200 to 2013 nm were used. It was found that when tip radius is smaller than 638 nm, the pop-in or displacement burst size increases linearly with it, and that when tip radius is larger than 638 nm, the pop—in size became essentially constant. These experimental findings confirm the effect of tip radius on pop-in behavior. A theoretical model based on image force has been developed to rationalize the above observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77(6), 060103 (2008)

    Article  ADS  Google Scholar 

  2. M.M. Biener, J. Biener, A.M. Hodge, A.V. Hamza, Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B 76(16), 165422 (2007)

    Article  ADS  Google Scholar 

  3. J.K. Mason, A.C. Lund, C.A. Schuh, Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73(5), 054102 (2006)

    Article  ADS  Google Scholar 

  4. A.M. Minor, Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19(01), 176–182 (2004)

    Article  ADS  Google Scholar 

  5. S. Shim, H. Bei, E.P. George, G.M. Pharr, A different type of indentation size effect. Scr. Mater. 59(10), 1095–1098 (2008)

    Article  Google Scholar 

  6. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, H.S. Leipner, Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67(17), 172101 (2003)

    Article  ADS  Google Scholar 

  7. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, W.D. Nix, Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51(5), 901–920 (2003)

    Article  ADS  Google Scholar 

  8. C.A. Schuh, Nanoindentation studies of materials. Mater Today 9, 32–40 (2006)

    Article  Google Scholar 

  9. C. Zhu, Z.P. Lu, T.G. Nieh, Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater 61(8), 2993–3001 (2013)

    Article  Google Scholar 

  10. Q.F. He, J.F. Zeng, S. Wang, Y.F. Ye, C. Zhu, T.G. Nieh, Z.P. Lu, Y. Yang, Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi highentropy alloy. Mater. Res. Lett. 5, 300–305 (2017)

    Article  Google Scholar 

  11. S. Suresh, T.G.; Nieh, B.W. Choi, Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41(9), 951–957 (1999)

    Article  Google Scholar 

  12. C.A. Schuh, A.C. Lund, Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19(07), 2152–2158 (2004)

    Article  ADS  Google Scholar 

  13. L. Chang, L. Zhang, Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 506(1), 125–129 (2009)

    Article  ADS  Google Scholar 

  14. Y. Shibutani, T. Tsuru, A. Koyama, Nanoplastic deformation of nanoindentation: crystallographic dependence of displacement bursts. Acta Mater. 55(5), 1813–1822 (2007)

    Article  Google Scholar 

  15. T. Tsuru, Y. Shibutani, Anisotropic effects in elastic and incipient plastic deformation under (001),(110), and (111) nanoindentation of Al and Cu. Phys. Rev. B 75(3), 035415 (2007)

    Article  ADS  Google Scholar 

  16. C.A. Schuh, J.K. Mason, A.C. Lund, Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4(8), 617–621 (2005)

    Article  ADS  Google Scholar 

  17. T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100(2), 025502 (2008)

    Article  ADS  Google Scholar 

  18. H.G. Vineyard, Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3(1), 121–127 (1957)

    Article  ADS  Google Scholar 

  19. H. Hertz, Miscellaneous papers, Macmillan, London(1896)

  20. A. Barnoush, Correlation between dislocation density and nanomechanical response during nanoindentation. Acta Mater. 60(3), 1268–1277 (2012)

    Article  Google Scholar 

  21. G.E. Dieter, D. Bacon, Mechanical metallurgy (McGraw-Hill, New York, 1986)

    Google Scholar 

  22. G.E. Beltz, L.B. Freund, On the nucleation of dislocations at a crystal surface. Phys. Status Solidi B-Basic Solid State Phys. 180(2), 303–313 (1993)

    Article  ADS  Google Scholar 

  23. V.B. Shenoy, R. Phillips, E.B. Tadmor, Nucleation of dislocations beneath a plane strain indenter. J. Mech. Phys. Solids 48(4), 649–673 (2000)

    Article  ADS  Google Scholar 

  24. C.R. Weinberger, W. Cai, Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. U. S. A. 105(38), 14304–14307 (2008)

    Article  ADS  Google Scholar 

  25. A.C. Fischer-Cripps, I. Mustafaev, Introduction to contact mechanics, Springer, Berlin (2000)

  26. D. Hull, D.J. Bacon, Introduction to dislocations (Pergamon Press, Oxford, 1984)

    Google Scholar 

  27. T.H. Courtney, Mechanical behavior of materials, Waveland Press, Long Grove (2005)

  28. J. Moon, M.J. Jang, J.W. Bae, D. Yim, J.M. Park, J. Lee, H.S. Kim, Mechanical behavior and solid solution strengthening model for face-centered cubic single crystalline and polycrystalline high-entropy alloys. Intermetallics 98, 89–94 (2018)

    Article  Google Scholar 

  29. M. Haglund, D. Koehler, E.P. Catoor, V. George, Keppens, Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics 58, 62–64 (2015)

    Article  Google Scholar 

  30. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E.P. George, Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloy. Compd. 623, 348–353 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly conducted during Zhu’s PhD at the University of Tennessee Knoxville. Zhu would like to thank Dr. Nieh from the University of Tennessee Knoxville for his guidance. Startup funds from Wuhan University of Technology under the grant numbers 444-20411183 and 471-40120378 are also deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiong, X. & Zhu, C. Dependence of pop-in behavior of a high-entropy alloy FeCoCrMnNi on tip radius. Appl. Phys. A 125, 115 (2019). https://doi.org/10.1007/s00339-019-2409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2409-z

Navigation