Skip to main content

Advertisement

Log in

Rutile TiO2 nanorod arrays incorporated with α-alumina for high efficiency dye sensitized solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rutile TiO2 nanorod arrays (TNAs) incorporating with α-alumina (α-Al2O3) thin film have been fabricated on the fluorine-doped tin oxide (FTO) by a modest and flexible doctor-blade technique-based hydrothermal method. The crystallinity of α-Al2O3 on TNAs and morphological control of the photo-anodes were characterized by X-ray diffraction (XRD), UV–Vis spectrophotometry, field emission scanning electron microscopy (FESEM), energy-dispersive spectrometric (EDS) and high-resolution transmission electron microscopy (HRTEM). The growth of α-Al2O3 crystals is influenced by aluminium seed concentrations. The growth mechanism of different morphological TNAs due to the incorporation of α-Al2O3 was discussed in detail. It has also demonstrated to the application of dye sensitized solar cells. Dye-sensitized solar cells (DSSCs) prepared with 3% α-Al2O3 incorporated TNAs shows an improved short-circuit current density of 15.23 mA cm−2, open-circuit photo voltage of 0.68 V, fill factor of 0.63 and a power conversion efficiency of 6.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.S. Mao, X. Chen, Selected nanotechnologies for renewable energy applications. Int. J. Energy. Res. 31(6–7), 619–636 (2007)

    Article  Google Scholar 

  2. M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Recent developments titanium oxide-based photocatalysts. Appl. Catal. A. Gen. 325, 1–14 (2007)

    Article  Google Scholar 

  3. B. O’Regan, M. Gratzel, Nature. (1991), 353, 737

  4. M. Gratzel, Acc. Chem. Res. (2009), 42, 1788

  5. Y.T. Kim, J. Park, S. Kim, D.W. Park, J. Choi, Electrochim. Acta. 78, 417 (2012)

    Article  Google Scholar 

  6. C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 90, 263501 (2007)

    Article  ADS  Google Scholar 

  7. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)

    Article  ADS  Google Scholar 

  8. T.S. Senthil, A.Y. Kim, N. Muthukumarasamy, M. Kang, J. Nanopart. Res. 15, 1926 (2013)

    Article  ADS  Google Scholar 

  9. T. Ling, J.G. Song, X.Y. Chen, J. Yang, S.Z. Qiao, X.W. Du, J. Alloys. Compd. 546, 307–313 (2013)

    Article  Google Scholar 

  10. J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364–13372 (2008)

    Article  Google Scholar 

  11. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, Nano. Lett. 11, 666 (2011)

    Article  ADS  Google Scholar 

  12. D. Miaoqiang Lv, M. Zheng, L. Ye, J. Sun, W. Xiao, C. Guo, Lin, Nanoscale. 4, 5872–5879 (2012)

    Article  Google Scholar 

  13. J.J. Wu, C.C. Yu, J. Phys. Chem. B 108, 3377–3379 (2004)

    Article  Google Scholar 

  14. Y. Liu, H. Wang, Y. Wang, H. Xu, M. Li, H. Shen, Chem. Commun. 47, 3790–3792 (2011)

    Article  Google Scholar 

  15. X.J. Feng, J. Zhai, L. Jiang, Angew. Chem. 44, 5115–5118 (2005)

    Article  Google Scholar 

  16. S. Fujihara, E. Hosono, K. Kakiuchi, H. Imai, J. Am. Chem. Soc. 126, 7790–7791 (2004)

    Article  Google Scholar 

  17. X.J. Feng, K. Shankar, M. Paulose, C.A. Grimes, Angew. Chem. 48, 8095–8098 (2009)

    Article  Google Scholar 

  18. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale. 2, 45–59 (2010)

    Article  ADS  Google Scholar 

  19. M. Shanmugam, M.F. Baroughi, D. Galipeau, Thin. Solid. Films. 518, 2678 (2010)

    Article  ADS  Google Scholar 

  20. A. Zaban, S.G. Chen, S. Chappel, B.A. Gregg, Chem. Commun. 0(22), 2231–2232 (2000)

  21. S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B. Chen, X.Z. Zhao, J. Power. Sour. 182, 119 (2008)

    Article  ADS  Google Scholar 

  22. M. Grätzel, Nature. 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  23. H. Krebs, Fundamentals of Inorganic Crystal Chemistry (McGraw-Hill, London, 1968), p. 242

    Google Scholar 

  24. H. Liu, G. Ning, Z. Gan, Y. Lin, A simple procedure to prepare spherical α-alumina powders. Mater. Res. Bull. 44, 785–788 (2009)

    Article  Google Scholar 

  25. Y. Akila, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, T.S. Senthil, Senthilarasu sundaram, natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells. J. Photochem. Photobiol. B 148, 223–231 (2015)

    Article  Google Scholar 

  26. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, 1978)

    Google Scholar 

  27. M. Okuya, S. Kaneko, K. Hiroshima, I. Yagi, K. Murakami, J. Eur. Ceram. Soc. 21, 2099 (2001)

    Article  Google Scholar 

  28. S. Rühle, D. Cahen, J. Phys. Chem. B 108, 17946 (2004)

    Article  Google Scholar 

  29. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999)

    Article  ADS  Google Scholar 

  30. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, J. Am. Chem. Soc. 125, 475 (2003)

    Article  Google Scholar 

  31. D. Kuang, S. Ito, B. Wenger, C. Klein, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 128, 4146 (2006)

    Article  Google Scholar 

  32. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano. Lett. 6, 215 (2006)

    Article  ADS  Google Scholar 

  33. N.N. Bwana, J. Nanopart. Res. 11, 1905 (2009)

    Article  ADS  Google Scholar 

  34. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpry-baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  35. H. Alarcón, M. Hedlund, E.M.J. Johansson, H. Rensmo, A. Hagfeldt, J. Phys. Chem. C 111, 13267 (2007)

    Article  Google Scholar 

  36. W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z.L. Wang, J. Am. Chem. Soc. 134, 4437–4441 (2012)

    Article  Google Scholar 

  37. B. Liu, S. Eray, Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)

    Article  Google Scholar 

  38. P.P. Sun, X.T. Zhang, X.P. Liu, L.L. Wang, C.H. Wang, J.K. Yang, Y.C. Liu, J. Mater.Chem. 22, 6389–6393 (2012)

    Article  Google Scholar 

  39. M. Zhun, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells. Ceram. Int. 40, 2337–2342 (2014)

    Article  Google Scholar 

  40. X.T. Zhang, H. Liu, T. Taguchi, Q.B. Meng, O. Sato, A. Fujishima, Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films. Sol. Energy. Mater. Sol. Cells. 81, 197–203 (2004)

    Article  Google Scholar 

  41. K.H. Park, M. Dhayal, Simultaneous growth of rutile TiO2 as 1D/3D nanorod/nanoflower on FTO in one-step process enhances electrochemical response of photoanode in DSSC. Electrochem. Commun. 49, 47–50 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 34/14/49/2014-BRNS with ATC from the Board of Research in Nuclear Sciences (BRNS) innovation major project proposal of the Department of Atomic Energy (DAE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. S. Senthil or Misook Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriharan, N., Senthil, T.S., Kang, M. et al. Rutile TiO2 nanorod arrays incorporated with α-alumina for high efficiency dye sensitized solar cells. Appl. Phys. A 125, 118 (2019). https://doi.org/10.1007/s00339-019-2407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2407-1

Navigation