Skip to main content
Log in

Influence of non-stoichiometry on the ferroelectric aging properties of Mn-doped BaTiO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the effect of the non-stoichiometry on the dielectric and ferroelectric properties especially the aging phenomenon of Bam(Ti0.995Mn0.005)O3 ceramics is studied. With the A/B site stoichiometry ratio m increased from 0.990 to 1.010, the Curie temperature is decreased from 128 to 118 °C monotonically. The non-stoichiometry shows the dramatic effect on the aging phenomenon of the Mn-doped BaTiO3 ceramics. As the aged sample with m < 1, an obvious constriction of hysteresis loop and recoverable electro-strain curve are observed. With m increased to 0.997, the recoverable electro-strain shows the highest value of 0.17%, whereas for the m > 1 samples, it shows the normal hysteresis loop and electro-strain curve as the un-aged samples. The valence state analysis of Mn ions shows that for the m < 1 and m = 1 samples only Mn2+ ions exist, while for the m > 1 samples Mn2+ and Mn4+ ions co-exist. Moreover, with m decreasing, the amount of Mn2+ ions increases. It is proposed that the non-stoichiometry affects the valence state of Mn ions, which causes the number of oxygen vacancies to change, ultimately affecting the aging effect of the Mn-doped BaTiO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Rae, M. Chu, V. Ganine, Barium titanate-past, present and future in ceramic transactions. In ed. by K.M. Nair, A.S. Bhalla. Dielectric Ceramic Materials (The American Ceramic Society, Westerville, 1999), pp. 1–12

    Google Scholar 

  2. T.G. Reynold III, Application space influences electronic ceramic materials. Am. Ceram. Soc. Bull 80, 29–33 (2001)

    Google Scholar 

  3. D.P. Shay, N.J. Nikolas, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)

    Article  Google Scholar 

  4. J. Jeong, Y.H. Han, Electrical properties of acceptor doped BaTiO3. J. Electroceram. 13, 549–53 (2004)

    Article  Google Scholar 

  5. S.I. Osawa, A. Furuzawa, N. Fujikawa, Effect of the manganese valence state on the electrical conductivity of barium titanate. J. Am. Ceram.Soc. 76, 1191–1194 (1993)

    Article  Google Scholar 

  6. W. Cai, C. Fu, G. Gao, X. Deng, Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1 − x)BiFeO3 solid solution ceramics. J. Mater. Sci. Mater. Electron. 21, 317–325 (2010)

    Article  Google Scholar 

  7. S.H. Cha, Y.H. Han, Effects of Mn doping on dielectric properties of Mg-doped BaTiO3. J. Appl. Phys. 100, 104102 (2006)

    Article  ADS  Google Scholar 

  8. H. Moriwake, C.A.J. Fisher, A. Kuwabara, First-principles calculations of electronic structure and solution energies of Mn-doped BaTiO3. Jpn. J. Appl. Phys. 49, 09MC01 (2010)

    Article  Google Scholar 

  9. M.M. Vijatović Petrović, J.D. Bobić, R. Grigalaitis, B.D. Stojanović, J. Banys, La-doped and La/Mn-co-doped barium titanate ceramics. Acta Phys. Pol. A 124, 155–160 (2013)

    Article  Google Scholar 

  10. H.T. Langhammer, T. Müller, A. Polity, K.-H. Felgner, H.-P. Abicht, On the crystal and defect structure of manganese-doped barium titanate ceramics. Mater. Lett. 26, 205–10 (1996)

    Article  Google Scholar 

  11. J. Weiss, G. Rosenstein, Addition of Ba2TiSi2O8 to manganese-doped barium titanate: effect on oxygen diffusion and grain-boundary composition. J. Mater. Sci. 23, 3263–3271 (1988)

    Article  ADS  Google Scholar 

  12. D.Y. Wang, K. Umeya, Spontaneous polarization screening effect and trap-state density at grain boundaries of semiconducting barium titanate ceramics. J. Am. Ceram. Soc. 74, 280–286 (1991)

    Article  Google Scholar 

  13. Y.C. Chen, G.-M. Lo, C.-R. Shih, L. Wu, M.-H. Chen, K.-C. Huang, Influence of manganese on lanthanum-doped BaTiO3, Jpn. J. Appl. Phys. 33, 1412–1416 (1994)

    Article  Google Scholar 

  14. J. Illingsworth, H.M. AlAllak, A.W. Brinkman, J. Woods, The influence of Mn on the grain-boundary potential barrier characteristics of donor-doped BaTiO3 ceramics. J. Appl. Phys. 67, 2088–2092 (1990)

    Article  ADS  Google Scholar 

  15. T. Baiatu, R. Waster, Härdtl, dc Electrical degradation of perovskite-type titanates: I. Ceram. J. Am. Ceram.Soc. 73, 1645–1653 (1990) and K.

    Article  Google Scholar 

  16. [16]S.H. Yoon, C.A. Randall, K.H. Hur, Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)-doped BaTiO3 submicrometer fine-grain ceramics. J. Am. Ceram.Soc. 93, 1950–1956 (2010)

    Google Scholar 

  17. F. Jona, G. Shirane, Ferroelectric Crystals (Macmillan, New York, 1962), p. 209

    Google Scholar 

  18. W.A. Schulze, K. Ogino, Review of literature on aging of dielectrics. Ferroelectrics 87, 361–377 (1988)

    Article  Google Scholar 

  19. K. Uchino, Ferroelectric Device (Dekker, New York, 2000), p. 279

    Google Scholar 

  20. F. Kulcsar, A microstructure study of barium titanate ceramics. J. Am. Ceram. Soc. 39(1), 13–17 (1955)

    Article  Google Scholar 

  21. C. Ning-Huat, D.M. Smyth, Defect chemistry of BaTiO3. J. Electrochem. Soc. 123(10), 1584–1585 (1976)

    Article  Google Scholar 

  22. T.F. Lin, C.T. Hu, I.N. Lin, Influence of stoichiometry on the microstructure and positive temperature coefficient of resistivity of semiconducting barium titanate ceramics. J. Am. Ceram. Soc. 73(3), 531–536 (1990)

    Article  Google Scholar 

  23. A. Beauger, J.C. Mutin, J.C. Niepce, Role and behavior of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics. J. Mater. Sci. 19(1), 195–201 (1984)

    Article  ADS  Google Scholar 

  24. J.K. Lee, K.S. Hong, J.W. Jang, Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84(9), 2001–2006 (2010)

    Article  Google Scholar 

  25. S. Lee, Z.K. Liu, M.H. Kim, C.A. Randall, Influence of non-stoichiometry on ferroelectric phase transition in BaTiO3. J. Appl. Phys. 101, 0541195 (2007)

    Google Scholar 

  26. Y.H. Hu, M.P. Harmer, D.M. Smyth, Solubility of BaO in BaTiO3. J. Am. Ceram. Soc. 68(7), 372–376 (1985)

    Article  Google Scholar 

  27. W.P. Chen, Shen Z. A strong correlation of crystal structure and Curie point of barium titanate ceramics with Ba/Ti ratio of precursor composition. Phys. B Condens Matter 403(4), 660–663 (2008)

    Article  ADS  Google Scholar 

  28. Y.K. Cho, S.L. Kang, D.Y. Yoon, Dependence of grain growth and grain-boundary structure on the Ba/Ti ratio in BaTiO3. J. Am. Ceram. Soc. 87, 119–124 (2004)

    Article  Google Scholar 

  29. P.R. Rios, T. Yamamoto, T. Kondo, et al., Abnormal grain growth kinetics of BaTiO3 with an excess TiO2. Acta Mater. 46(5), 1617–1623 (1998)

    Article  Google Scholar 

  30. G. Liu, R.D. Roseman, Effect of BaO and SiO2 addition on PTCR BaTiO3 ceramics. J. Mater. Sci. 34(18), 4439–4445 (1999)

    Article  ADS  Google Scholar 

  31. K. Carl, K.H. Hardtl, Electrical after-effects in Pb(Ti,Zr)O3 ceramics. Ferroelectrics 17, 473–486 (1977)

    Article  Google Scholar 

  32. K. Okazaki, H. Maiwa, Space charge effects on ferroelectric ceramic particle surfaces. Jpn. J. Appl. Phys. 31, 3113–3116 (1992)

    Article  ADS  Google Scholar 

  33. S. Takahashi, Internal bias field effects in lead zirconate–titanate ceramics doped with multiple impurities. Jpn. J. Appl. Phys. 20, 95–101 (1981)

    Article  ADS  Google Scholar 

  34. Q. Tian, Z. Xu, D. Viehland, Commonalties of the influence of lower valent Asite and B-site modifications on lead zirconate titanate ferroelectrics and antiferroelectrics. J. Mater. Res. 14, 465–475 (1999)

    Article  ADS  Google Scholar 

  35. L.X. Zhang, W. Chen, X. Ren, Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics. Appl. Phys. Lett. 85, 5658–5660 (2004)

    Article  ADS  Google Scholar 

  36. L.X. Zhang, X. Ren, In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals. Phys. Rev. B 71, 174108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. L.X. Zhang, X. Ren, Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys. Rev. B 73, 094121 (2006)

    Article  ADS  Google Scholar 

  38. A. Popa, D. Toloman, O. Raita, M. Stan, B.S. Vasile, C. Leostean, L.M. Giurgiu, Spin dynamics evidenced by EPR in Sn1−xMnxO2 nanoparticles annealed at different temperature. J. Alloys Compd. 551, (2013) 300–305

    Article  Google Scholar 

  39. M. Occhiuzzi, D. Cordischi, R. Dragone, Manganese ions in the monoclinic, tetragonal and cubic phases of zirconia: an XRD and EPR study. Phys. Chem. Chem. Phys. 5, 4938–4945 (2003)

    Article  Google Scholar 

  40. W. Chen, X. Zhao, J. Sun, et al., Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloys Compd. 670, 48–54 (2016)

    Article  Google Scholar 

  41. X. Zhao, W. Chen, L. Zhang et al., The effect of the bipolar field on the aging behavior and the associated properties of the Mn-doped BaTiO3 ceramics. J. Alloy. Compd. 618, 707–711 (2015)

    Article  Google Scholar 

  42. D.M. Smith, The Defect Chemistry of Metal Oxides (Oxford University Press, New York, 2000)

    Google Scholar 

  43. X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3(2), 91–94 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (Grant number 51707177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhao, X. Influence of non-stoichiometry on the ferroelectric aging properties of Mn-doped BaTiO3 ceramics. Appl. Phys. A 125, 109 (2019). https://doi.org/10.1007/s00339-019-2405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2405-3

Navigation