Skip to main content
Log in

Efficient orbital angular momentum vortex beam generation by generalized coding metasurface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A method to efficiently generate orbital angular momentum (OAM) vortex beam is proposed by introducing generalized coding metasurface (CM). Firstly, a linearly polarized (LP) cross-polarization transmission unit cell is employed as the coding element. Then, the generalized CM composed of sectorial coding elements can be considered as a bridge linking mode number of OAM and beam divergence with coding sequences. Different mode numbers OAM is generated by CMs with different coding sequences under y-polarized wave normal incidence. Both theoretical analysis and simulated results reveal that the proposed CM can achieve flexible control of the OAM vortex beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Allen, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  2. S. Franke-Arnold, Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008)

    Article  ADS  Google Scholar 

  3. G. Gibson, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)

    Article  ADS  Google Scholar 

  4. G.C.G. Berkhout, Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010)

    Article  ADS  Google Scholar 

  5. A. Vaziri, Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89, 240401 (2002)

    Article  ADS  Google Scholar 

  6. J.T. Barreiro, Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282 (2008)

    Article  Google Scholar 

  7. M.W. Beijersbergen, Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Comm. 112, 321–327 (1994)

    Article  ADS  Google Scholar 

  8. N.R. Heckenberg, Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992)

    Article  ADS  Google Scholar 

  9. N.F. Yu, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  10. F.Y. Yue, Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016)

    Article  Google Scholar 

  11. E. Karimi, Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014)

    Article  MathSciNet  Google Scholar 

  12. S.X. Yu, Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 108, 121903 (2016)

    Article  ADS  Google Scholar 

  13. S.X. Yu, Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 108, 241901 (2016)

    Article  ADS  Google Scholar 

  14. T.J. Cui, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)

    Article  Google Scholar 

  15. T.J. Cui, Information metamaterials and metasurfaces. J. Mater. Chem. C 5, 3644–3668 (2017)

    Article  Google Scholar 

  16. Q.Q. Zheng, Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase. Sci. Rep. 7, 43543 (2017)

    Article  ADS  Google Scholar 

  17. M.C. Feng, Ultra-wideband and high-efficiency transparent coding metasurfaces. Appl. Phys. A 124, 630 (2018)

    Article  ADS  Google Scholar 

  18. M.C. Feng, Two-dimensional coding phase gradient metasurface for RCS reduction. J. Phys. D Appl. Phys. 51, 375103 (2018)

    Article  Google Scholar 

  19. Y.F. Li, Broadband unidirectional cloaks based on flat metasurface focusing lenses. J. Phys. D Appl. Phys. 48, 335101 (2015)

    Article  ADS  Google Scholar 

  20. M.C. Feng, Wide-angle flat metasurface corner reflector. Appl. Phys. Lett. 113, 143504 (2018)

    Article  ADS  Google Scholar 

  21. Y.F. Li, Wideband polarization conversion with the synergy of waveguide and spoof surface plasmon polariton modes. Phys. Rev. Appl. 10, 064002 (2018)

    Article  ADS  Google Scholar 

  22. Y.F. Li, Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Appl. Phys. Lett. 104, 221110 (2014)

    Article  ADS  Google Scholar 

  23. Y.F. Li, k-dispersion engineering of spoof surface plasmon polaritons for beam steering. Opt. Express 24, 842–852 (2016)

    Article  ADS  Google Scholar 

  24. Y.F. Li, High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons. Opt. Express 24, 24938–24946 (2016)

    Article  ADS  Google Scholar 

  25. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Science 340, 1304 (2013)

    Article  ADS  Google Scholar 

  26. L. Zhang, Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces. ACS Appl. Mater. Interfaces 9, 36447–36455 (2017)

    Article  Google Scholar 

  27. L. Liang, Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Adv. Opt. Mater. 3, 1374–1380 (2015)

    Article  Google Scholar 

  28. L. Zhang, Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater. 2018, 1802205 (2018)

    Article  Google Scholar 

  29. L. Zhang, Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the supports from the National Natural Science Foundation of China under Grant Nos. 61501503, 61471388, and 61331005, and the Natural Science Foundation of Shaanxi Province under Grant No. 2017JM6005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongfeng Li or Jieqiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Li, Y., Han, Y. et al. Efficient orbital angular momentum vortex beam generation by generalized coding metasurface. Appl. Phys. A 125, 136 (2019). https://doi.org/10.1007/s00339-018-2373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2373-z

Navigation